Câu hỏi:

13/07/2024 2,746

Lớp 6A có 15 học sinh thích môn Ngữ văn, 20 học sinh thích môn Toán. Trong số các học sinh thích môn Ngữ văn hoặc môn Toán có 8 học sinh thích cả hai môn Toán và Ngữ văn. Ngoài ra, trong lớp vẫn còn có 10 học sinh không thích môn nào (trong cả hai môn Ngữ văn và Toán). Lớp 6A có tất cả bao nhiêu học sinh?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

 Bài 8 trang 7 sách bài tập Toán lớp 6 Tập 1

Số học sinh yêu thích riêng môn Ngữ văn là: 15 – 8 = 7 (học sinh).

Số học sinh yêu thích riêng môn Toán là: 20 – 8 = 12 (học sinh).

Tổng số học sinh yêu thích môn Ngữ văn và Toán là: 12 + 7 + 8 = 27 (học sinh).

Số học sinh của lớp 6A là: 27 + 10 = 37 (học sinh).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta nhận thấy các phần tử của tập hợp A là các số tự nhiên lẻ lớn hơn 12 và nhỏ hơn 30.

Theo cách chỉ ra tính chất đặc trưng, ta viết:

A = {x | x là số tự nhiên lẻ, 12 < x < 30}.

b) Ta nhận thấy các phần tử của tập hợp B là các số tự nhiên chẵn lớn hơn hoặc bằng 22 và nhỏ hơn hoặc bằng 42.

Theo cách chỉ ra tính chất đặc trưng, ta viết:

B = {x|x là số tự nhiên chẵn, 22 ≤ x ≤ 42}.

c)

+) Cách 1:

Ta có:

7 = 4.1 + 3; 11 = 4.2 + 3; 15 = 4.3 + 3; 19 = 4.4 + 3; 23 = 4.5 + 3; 27 = 4.6 + 3.

Ta nhận thấy các số trên đều có dạng 4.x + 3 với x ∈ {1,2,3,4,5,6} .

Theo cách chỉ ra tính chất đặc trưng, ta viết:

C = {4x + 3| x là số tự nhiên, 0 < x < 7}.

+) Cách 2:

Ta nhận thấy các phần tử trong tập hợp C là các số tự nhiên lẻ và cách nhau 4 đơn vị.

C = {xk| xk là số tự nhiên lẻ, xk+1 – xk = 4,k ∈ N }.

d) Ta thấy các phần tử của tập hợp D là các số chính phương lớn hơn 3 và nhỏ hơn 50.

Theo cách chỉ ra tính chất đặc trưng, ta viết:

D = {x| x là số chính phương, 3 < x < 50}.

Lời giải

Các năng lượng tái tạo trên thế giới: năng lượng gió; năng lượng Mặt trời, năng lượng địa nhiệt.

Khi đó tập X = {năng lượng gió; năng lượng Mặt trời; năng lượng địa nhiệt}.

Các năng lượng tái tạo mà Việt Nam sản xuất: năng lượng gió; năng lượng Mặt trời.

Khi đó tập Y = {năng lượng gió; năng lượng Mặt trời}.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay