Câu hỏi:

17/05/2022 616

Một người chạy tập thể dục trên một con đường hình vuông khép kín có chu vi 400 m. Bên trong vùng đất được bao bởi con đường có đặt một nguồn âm điểm phát âm đẳng hướng ra bên ngoài. Khi đi hết một vòng khép kín thì người đó thấy có hai vị trí mà mức cường độ âm bằng nhau và là lớn nhất có giá trị \({L_1}\) và có một điểm duy nhất mức cường độ âm nhỏ nhất là \({L_2}\) trong đó \[{L_1} = {L_2} + 10\]dB. Khoảng cách từ nguồn âm đến tâm của hình vuông tạo bởi con đường gần nhất với giá trị nào sau đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp:

    Khái niệm cường độ điện hiệu dụng được xây dựng dựa vào tác dụng nhiệt của dòng điện.

Cách giải: 

Giả sử nguồn âm đặt tại O, cách tâm hình vuông đoạn d

Hình vuông có chu vi 400m nên mỗi cạnh có chiều dài 100m

Vì có hai vị trí có cường độ âm lớn nhất và bằng nhau nên OA = OB và mức cường độ âm lớn nhất đo được tại A và B,  mức cường độ âm nhỏ nhất đo được tại C

Một người chạy tập thể dục trên một con đường hình vuông khép kín có chu vi 400 m. Bên trong vùng đất được bao bởi con đường có đặt (ảnh 1)

Ta có: \[{I_A} = {I_B} = \frac{P}{{4\pi {a^2}}} = {I_0}{.10^{\frac{{{L_1}}}{{10}}}}\] (1)

IC=P4π.(1002 -a2)2=I0.10L210 (2)

Vì L1=L2+10(dB) \[ \Rightarrow \frac{{{L_1}}}{{10}} = \frac{{{L_2}}}{{10}} + 1 \Rightarrow {10^{\frac{{{L_1}}}{{10}}}} = {10^{\frac{{{L_2}}}{{10}}}}.10\] (3)

Từ (1,2,3) ta có: (1002 -a2)2a2=10a=31m

Vậy khoảng cách từ O đến tâm hình vuông là 502 -312 =26,9m

Chọn B. 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp: 

Cường độ dòng điện ở cuộn thứ cấp:\[I = \frac{P}{U}\]

Điện áp ở cuối đường dây:\[U' = U - I.R\]

Cách giải: 

Dòng điện ở cuộn thứ cấp là: \[I = \frac{P}{U} = \frac{{{{4.10}^3}}}{{220}} = \frac{{200}}{{11}}A\]

Điện áp ở cuối đường dây: \[U' = U - I.R = 220 - \frac{{200}}{{11}}.2 = 183,6V\]

Chọn A.

Lời giải

Phương pháp: 

\[{\rm{\Delta }}N = {N_0}\left( {1 - {2^{ - \frac{t}{T}}}} \right)\]

Cách giải: 

Ta có: \[{\left( {1 - \frac{{{\rm{\Delta }}N}}{{{N_0}}}} \right)^{ - 1}} = \frac{1}{{1 - \frac{{{\rm{\Delta }}N}}{{{N_0}}}}} = \frac{1}{{1 - \left( {1 - {2^{ - \frac{t}{T}}}} \right)}} = \frac{1}{{{2^{ - \frac{t}{T}}}}} = {2^{\frac{t}{T}}}\]

\[ \Rightarrow ln{(1 - \frac{{\Delta N}}{{{N_0}}})^{ - 1}} = ln{2^{\frac{t}{T}}}\]

Từ đồ thị ta thấy: t=6 ngày

\[\ln {(1 - \frac{{\Delta N}}{{{N_0}}})^{ - 1}} = 0,467 \Rightarrow ln{2^{\frac{6}{T}}} = 0,467 \Rightarrow T = 8,82\]ngày

Chọn A. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP