Câu hỏi:

17/05/2022 862

Làm thí nghiệm giao thoa ánh sáng với hai khe Y−âng đồng thời với hai ánh sáng đơn sắc đơn sắc màu đỏ và màu lục thì khoảng vân giao thoa trên màn lần lượt là 1,5 mm và 1,1 mm. Hai điểm M và N nằm hai bên vân sáng trung tâm và cách vân trung tâm lần lượt là 6,4 mm và 26,5 mm. số vân sáng màu đỏ quan sát được trên đoạn MN là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp: 

Sử dụng các công thức tính độ lớn của cảm ứng từ gây ra bởi dây dẫn có hình dạng đặc biệt

-1 điểm nằm cách dây dẫn thẳng dài 1 đoạn R là: \[B = {2.10^{ - 7}}\frac{I}{R}\]

-1 điểm nằm tại tâm vòng dây bán kính R là: \[B = 2\pi {.10^{ - 7}}\frac{I}{R}\]

-trong lòng ống dây có chiều lài l, gồm N vòng dây là: \[B = 2\pi {.10^{ - 7}}\frac{{NI}}{l}\]

Cách giải: 

+ nếu chỉ sử dụng ánh sáng đỏ:

-6,4xd26,5-6,41,5k126,5-4,3k117,6k1=-4;-3;;17

Nđ=22 vân

Khi thực hiện giao thoa đồng thời hai ánh sáng màu đỏ và lục: 

Vị trí trùng nhau của hai bức xạ: 

\[{k_1}{i_1} = {k_2}{i_2} \Rightarrow \frac{{{k_2}}}{{{k_1}}} = \frac{{{i_1}}}{{{i_2}}} = \frac{{1,5}}{{1,1}} = \frac{{15}}{{11}}\]

\[ \Rightarrow \]\[\begin{array}{l}{k_1} = 11n\\{k_2} = 15n\end{array}\]\[ \Rightarrow \]xt=11n.i1=16,5n(mm)

Số vân sáng trùng nhau của hai bức xạ trên đoạn MN là:

-6,4xT26,5-6,416,5n26,5-0,4n1,6

\[ \Rightarrow n = 0;1\]\[ \Rightarrow \] NT=2 vân

+ Số vân sáng màu đỏ quan sát được khi thực hiện giao thoa đồng thời hai bức xạ đỏ và lục: N=Nđ−NT=22−2=20

Vậy trên MN có 20 vân sáng đỏ

Chọn B. 

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Phương pháp: 

Cường độ dòng điện ở cuộn thứ cấp:\[I = \frac{P}{U}\]

Điện áp ở cuối đường dây:\[U' = U - I.R\]

Cách giải: 

Dòng điện ở cuộn thứ cấp là: \[I = \frac{P}{U} = \frac{{{{4.10}^3}}}{{220}} = \frac{{200}}{{11}}A\]

Điện áp ở cuối đường dây: \[U' = U - I.R = 220 - \frac{{200}}{{11}}.2 = 183,6V\]

Chọn A.

Lời giải

Phương pháp: 

\[{\rm{\Delta }}N = {N_0}\left( {1 - {2^{ - \frac{t}{T}}}} \right)\]

Cách giải: 

Ta có: \[{\left( {1 - \frac{{{\rm{\Delta }}N}}{{{N_0}}}} \right)^{ - 1}} = \frac{1}{{1 - \frac{{{\rm{\Delta }}N}}{{{N_0}}}}} = \frac{1}{{1 - \left( {1 - {2^{ - \frac{t}{T}}}} \right)}} = \frac{1}{{{2^{ - \frac{t}{T}}}}} = {2^{\frac{t}{T}}}\]

\[ \Rightarrow ln{(1 - \frac{{\Delta N}}{{{N_0}}})^{ - 1}} = ln{2^{\frac{t}{T}}}\]

Từ đồ thị ta thấy: t=6 ngày

\[\ln {(1 - \frac{{\Delta N}}{{{N_0}}})^{ - 1}} = 0,467 \Rightarrow ln{2^{\frac{6}{T}}} = 0,467 \Rightarrow T = 8,82\]ngày

Chọn A. 

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP