Vật nhỏ trong con lắc lò xo dao động điều hòa theo phương thẳng đứng với chu kì 0,4 s. Trong mỗi chu kì dao động, thời gian lò xo bị dãn lớn gấp hai lần thời gian lò xo bị nén. Lấy \[g = {\pi ^2}\]m/s2. Biên độ dao động của con lắc bằng
Quảng cáo
Trả lời:
Phương pháp: Tại vị trí cần bằng: P=Fđh
Cách giải:
Vậy thời gian đi từ vị trí cân bằng đến hết ∆l mất \[\Delta t = \frac{T}{{12}} \Rightarrow \frac{A}{2} = 4 \Rightarrow A = 8cm\]
Chọn B
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Phương pháp:
Cường độ dòng điện ở cuộn thứ cấp:\[I = \frac{P}{U}\]
⇒Điện áp ở cuối đường dây:\[U' = U - I.R\]
Cách giải:
Dòng điện ở cuộn thứ cấp là: \[I = \frac{P}{U} = \frac{{{{4.10}^3}}}{{220}} = \frac{{200}}{{11}}A\]
⇒Điện áp ở cuối đường dây: \[U' = U - I.R = 220 - \frac{{200}}{{11}}.2 = 183,6V\]
Chọn A.
Lời giải
Phương pháp:
\[{\rm{\Delta }}N = {N_0}\left( {1 - {2^{ - \frac{t}{T}}}} \right)\]
Cách giải:
Ta có: \[{\left( {1 - \frac{{{\rm{\Delta }}N}}{{{N_0}}}} \right)^{ - 1}} = \frac{1}{{1 - \frac{{{\rm{\Delta }}N}}{{{N_0}}}}} = \frac{1}{{1 - \left( {1 - {2^{ - \frac{t}{T}}}} \right)}} = \frac{1}{{{2^{ - \frac{t}{T}}}}} = {2^{\frac{t}{T}}}\]
\[ \Rightarrow ln{(1 - \frac{{\Delta N}}{{{N_0}}})^{ - 1}} = ln{2^{\frac{t}{T}}}\]
Từ đồ thị ta thấy: t=6 ngày
\[\ln {(1 - \frac{{\Delta N}}{{{N_0}}})^{ - 1}} = 0,467 \Rightarrow ln{2^{\frac{6}{T}}} = 0,467 \Rightarrow T = 8,82\]ngày
Chọn A.Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.