Câu hỏi:
18/05/2022 412Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).
Quảng cáo
Trả lời:
Phương pháp:
+ Sử dụng biểu thức tính diện tích tam giác: \({S_\Delta } = \frac{1}{2}ab\)
+ Sử dụng BĐT Cosi: \(a + b \ge 2\sqrt {ab} \)
+ Sử dụng điều kiện xảy ra cực đại giao thoa giữa 2 nguồn cùng pha: \({d_2} - {d_1} = k\lambda \)
Cách giải:
Ta có: \({S_{\Delta M{\rm{D}}}} = {S_{AB{\rm{DC}}}} - {S_{ACM}} - {S_{B{\rm{DM}}}}\)
\( \Rightarrow {S_{\Delta MCD}} = \frac{{(AC + BD)AB}}{2} - \frac{{AC \cdot AM}}{2} - \frac{{DB \cdot BM}}{2}\)
\( \Rightarrow {S_{\Delta MCD}} = \frac{{(x + y) \cdot 14}}{2} - \frac{{x.6}}{2} - \frac{{y.8}}{2} = 4x + 3y\)
Lại có:
\( \Rightarrow \frac{x}{6} = \frac{8}{y} \Rightarrow xy = 48 \Rightarrow 4x.3y = 48.12 = 576\)
Áp dụng BĐT Cosi, ta có:
Dấu “=” xảy ra khi \(4x = 3y\)
Khi đó
Xét tại M, có: \(MB - MA = 8 - 6 = 2\;{\rm{cm}}\)
Xét tại D, có:
Số điểm dao động cực đại trên MD thỏa mãn:
Vậy trên MD có 12 điểm dao động với biên độ cực đại.
Chọn C.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 3:
Câu 4:
Câu 5:
Câu 6:
Câu 7:
(2025 mới) Đề ôn thi tốt nghiệp THPT Vật lí (Đề số 1)
(2025 mới) Đề ôn thi tốt nghiệp THPT Vật lí (Đề số 6)
(2025 mới) Đề ôn thi tốt nghiệp THPT Vật lí (Đề số 5)
(2025 mới) Đề ôn thi tốt nghiệp THPT Vật lí (Đề số 3)
(2025 mới) Đề ôn thi tốt nghiệp THPT Vật lí (Đề số 4)
(2025 mới) Đề ôn thi tốt nghiệp THPT Vật lí (Đề số 7)
(2025 mới) Đề ôn thi tốt nghiệp THPT Vật lí (Đề số 2)
25 câu trắc nghiệm ôn thi tốt nghiệp THPT môn Vật Lý Chủ đề 7: Khí lý tưởng có đáp án
về câu hỏi!