Câu hỏi:
04/06/2022 211Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).
Quảng cáo
Trả lời:
Phương pháp giải:
- Cô lập m, đưa phương trình về dạng \[m = f\left( x \right)\]. Khi đó số nghiệm của phương trình là số giao điểm của đồ thị hàm số \[y = f\left( x \right)\] và đường thẳng \[y = m\].
- Lập BBT của hàm số \[y = f\left( x \right)\].
- Dựa vào bảng biến thiên để xác định giá trị của m.
Giải chi tiết:
Ta có
\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} m\sqrt {{x^2} + 2} = x + m \Leftrightarrow m\left( {\sqrt {{x^2} + 2} - 1} \right) = x \Leftrightarrow m = \frac{x}{{\sqrt {{x^2} + 2} - 1}} = f\left( x \right){\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {x \in \mathbb{R}} \right)\]
\[ \Rightarrow f'\left( x \right) = \frac{{2 - \sqrt {{x^2} + 2} }}{{{{\left( {\sqrt {{x^2} + 2} - 1} \right)}^2}}} = 0 \Leftrightarrow x = \pm \sqrt 2 \]
Bảng biến thiên:
Dựa vào bảng biến thiên ta thấy để hàm số đã cho có 2 nghiệm thì \[\left[ {\begin{array}{*{20}{l}}{ - \sqrt 2 < m < - 1}\\{1 < m < \sqrt 2 }\end{array}} \right.\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 3:
Câu 5:
Đề thi thử Đánh giá năng lực trường ĐHQG Hồ Chí Minh năm 2024 có đáp án (Đề 1)
ĐGNL ĐHQG TP.HCM - Sử dụng ngôn ngữ Tiếng Việt - Chính tả
Bộ 15 đề thi Đánh giá năng lực trường ĐHQG HCM có đáp án (Đề 1)
Đề thi thử Đánh giá năng lực trường ĐHQG Hồ Chí Minh năm 2024 có đáp án (Đề 7)
ĐGNL ĐHQG TP.HCM - Sử dụng ngôn ngữ Tiếng Việt - Tổng hợp các đề đọc hiểu (P1)
ĐGNL ĐHQG TP.HCM - Sử dụng ngôn ngữ Tiếng Việt - Tìm và phát hiện lỗi sai
Đề thi thử Đánh giá năng lực trường ĐHQG Hồ Chí Minh năm 2024 có đáp án (Đề 2)
Đề luyện thi ngôn ngữ có đáp án (Đề 1)
về câu hỏi!