Câu hỏi:
04/06/2022 239Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác
Quảng cáo
Trả lời:
Phương pháp giải:
- Cô lập m, đưa phương trình về dạng \[m = f\left( x \right)\]. Khi đó số nghiệm của phương trình là số giao điểm của đồ thị hàm số \[y = f\left( x \right)\] và đường thẳng \[y = m\].
- Lập BBT của hàm số \[y = f\left( x \right)\].
- Dựa vào bảng biến thiên để xác định giá trị của m.
Giải chi tiết:
Ta có
\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} m\sqrt {{x^2} + 2} = x + m \Leftrightarrow m\left( {\sqrt {{x^2} + 2} - 1} \right) = x \Leftrightarrow m = \frac{x}{{\sqrt {{x^2} + 2} - 1}} = f\left( x \right){\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {x \in \mathbb{R}} \right)\]
\[ \Rightarrow f'\left( x \right) = \frac{{2 - \sqrt {{x^2} + 2} }}{{{{\left( {\sqrt {{x^2} + 2} - 1} \right)}^2}}} = 0 \Leftrightarrow x = \pm \sqrt 2 \]
Bảng biến thiên:
Dựa vào bảng biến thiên ta thấy để hàm số đã cho có 2 nghiệm thì \[\left[ {\begin{array}{*{20}{l}}{ - \sqrt 2 < m < - 1}\\{1 < m < \sqrt 2 }\end{array}} \right.\].
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Câu 5:
Đề thi thử Đánh giá năng lực trường ĐHQG Hồ Chí Minh năm 2024 có đáp án (Đề 1)
ĐGNL ĐHQG TP.HCM - Sử dụng ngôn ngữ Tiếng Việt - Chính tả
Đề thi thử Đánh giá năng lực trường ĐHQG Hồ Chí Minh năm 2024 có đáp án (Đề 5)
Đề thi thử Đánh giá năng lực trường ĐHQG Hồ Chí Minh năm 2024 có đáp án (Đề 7)
Đề thi thử Đánh giá năng lực trường ĐHQG Hồ Chí Minh năm 2024 có đáp án (Đề 2)
Bộ 15 đề thi Đánh giá năng lực trường ĐHQG HCM có đáp án (Đề 1)
Đề thi thử Đánh giá năng lực trường ĐHQG Hồ Chí Minh năm 2024 có đáp án (Đề 4)
Đề thi thử Đánh giá năng lực trường ĐHQG Hồ Chí Minh năm 2024 có đáp án (Đề 6)
về câu hỏi!