Cho đường cong \[\left( C \right):y = \frac{{x - 3}}{{x + 1}}\] và đường thẳng \[d:{\mkern 1mu} y = x + 3m\]. Tìm tất cả các giá trị của \[m\] để \[d\] và \[\left( C \right)\] cắt nhau tại hai điểm phân biệt \[A,B\] sao cho trung điểm I của đoạn thẳng \[AB\] có hoành độ bằng 3.
A. \[m = - 1\].
Quảng cáo
Trả lời:

Phương pháp giải:
- Xét phương trình hoành độ giao điểm, tìm điều kiện để phương trình hoành độ giao điểm có hai nghiệm phân biệt.
- Sử dụng hệ thức Vi-et.
- Sử dụng công thức trung điểm: I là trung điểm của \[AB\] thì \[{x_I} = \frac{{{x_A} + {x_B}}}{2}\] .
Giải chi tiết:
Xét phương trình hoành độ giao điểm:
\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \frac{{x - 3}}{{x + 1}} = x + 3m{\mkern 1mu} {\mkern 1mu} \left( {x \ne - 1} \right) \Leftrightarrow x - 3 = {x^2} + 3mx + x + 3m\]
\[ \Leftrightarrow {x^2} + 3mx + 3m + 3 = 0{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( * \right)\]
Để \[\left( C \right)\] và \[d\] cắt nhau tại hai điểm phân biệt thì phương trình (*) có 2 nghiệm phân biệt
\[ \Leftrightarrow \Delta > 0 \Leftrightarrow 9{m^2} - 12m - 12 > 0 \Leftrightarrow \left[ {\begin{array}{*{20}{l}}{m > 2}\\{m < - \frac{2}{3}}\end{array}} \right.\]
Khi đó, phương trình (1) có 2 nghiệm phân biệt \[{x_1},{\mkern 1mu} {\mkern 1mu} {x_2}\] thỏa mãn: \[{x_1} + {x_2} = - 3m\] (Định lí Vi-ét).
Trung điểm I của AB có hoành độ 3 nên: \[\frac{{{x_1} + {x_2}}}{2} = 3\frac{{ - 3m}}{2} = 3 \Leftrightarrow m = - 2{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {tm} \right).\]
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
A. mệnh đề (2) và (3) là đúng, còn mệnh đề (1) là sai
Lời giải
Phương pháp giải:
Số chính phương có các chữ số tận cùng là \[0,1,4,5,6,9\]. Dùng loại trừ để đưa ra đáp án đúng.
Giải chi tiết:
Ta có số chính phương có các chữ số tận cùng là \[0,1,4,5,6,9\]. Vì vậy
- Nhận thấy giữa mệnh đề (1) và (2) có mâu thuẫn. Bởi vì, giả sử 2 mệnh đề này đồng thời là đúng thì \[n + 8\] có chữ số tận cùng là 2 nên không thể là số chính phương. Vậy trong hai mệnh đề này phải có một mệnh đề là đúng và một mệnh đề là sai.
- Tương tự, nhận thấy giữa mệnh đề (2) và (3) cũng có mâu thuẫn. Bởi vì, giả sử mệnh đề này đồng thời là đúng thì \[n - 1\] có chữ số tận cùng là 3 nên không thể là số chính phương.
Vậy trong ba mệnh đề trên thì mệnh đề (1) và (3) là đúng, còn mệnh đề (2) là sai.
Câu 2
A. 49,60 kg.
Lời giải
Phương pháp giải:
Tính khối lượng nguyên tố N ít nhất trong 1 bao phân đạm trên.
Suy ra khối lượng ure tương ứng với lượng N trên.
Giải chi tiết:
Khối lượng nguyên tố N trong 1 bao phân đạm trên ít nhất là: \[50 \times 46,3\% = 23,15\left( {kg} \right)\]
Khối lượng ure tương ứng với lượng N trên là: \[\frac{{23,15 \times 60}}{{28}} = 49,6\left( {kg} \right)\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
A. All of the students
D. they work hard
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
A. Native
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. as
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
A. Some Americans are said that they are superficially friendly.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.