Câu hỏi:
11/06/2022 116Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Quảng cáo
Trả lời:
Phương pháp giải:
- Chia tử cho mẫu để đưa biểu thức dưới dấu tích phân về dạng đa thức + phân thức hữu tỉ có bậc tử nhỏ hơn bậc mẫu.
- Phân tích mẫu thành nhân tử, biến đổi để xuất hiện các tích phân dạng \[\int\limits_1^2 {\frac{k}{{ax + b}}dx} \]
- Tính tích phân và tìm \[a,{\mkern 1mu} {\mkern 1mu} b,{\mkern 1mu} {\mkern 1mu} c\]
Giải chi tiết:
Ta có:
\[\int\limits_1^2 {\frac{{{x^3} - 1}}{{{x^2} + x}}dx} = \int\limits_1^2 {\left( {x - 1 + \frac{{x - 1}}{{{x^2} + x}}} \right)dx} = \int\limits_1^2 {\left( {x - 1} \right)dx} + \int\limits_1^2 {\frac{{x - 1}}{{x\left( {x + 1} \right)}}dx} = \frac{1}{2} + I\]
Giả sử \[\frac{{x - 1}}{{x\left( {x + 1} \right)}} = \frac{B}{x} + \frac{C}{{x + 1}}\]
\[ \Leftrightarrow \frac{{x - 1}}{{x\left( {x + 1} \right)}} = \frac{{B\left( {x + 1} \right) + Cx}}{{x\left( {x + 1} \right)}} \Leftrightarrow \frac{{x - 1}}{{x\left( {x + 1} \right)}} = \frac{{\left( {B + C} \right)x + B}}{{x\left( {x + 1} \right)}}\]
\[ \Rightarrow \left\{ {\begin{array}{*{20}{l}}{B + C = 1}\\{B = - 1}\end{array}} \right. \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{B = - 1}\\{C = 2}\end{array}} \right.\]
Khi đó ta có
\[I = \int\limits_1^2 {\frac{{x - 1}}{{x\left( {x + 1} \right)}}dx} = \int\limits_1^2 {\frac{{ - 1}}{x}dx} + \int\limits_1^2 {\frac{2}{{x + 1}}dx} \]
\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = \left. { - \ln \left| x \right|} \right|_1^2 + \left. {2\ln \left| {x + 1} \right|} \right|_1^2\]\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = - \ln 2 + 2\ln 3 - 2\ln 2\]\[{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} = 2\ln 3 - 3\ln 2\]
\[ \Rightarrow \int\limits_1^2 {\frac{{{x^3} - 1}}{{{x^2} + x}}dx} = \frac{1}{2} + 2\ln 3 - 3\ln 2\]\[ \Rightarrow \left\{ {\begin{array}{*{20}{l}}{a = \frac{1}{2}}\\{b = 2}\\{c = - 3}\end{array}} \right.\]
Vậy \[2a + 3b - 4c = 2.\frac{1}{2} + 3.2 - 4.\left( { - 3} \right) = 19\]
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Cho ba mệnh đề sau, với n là số tự nhiên
(1) \[n + 8\] là số chính phương (2) Chữ số tận cùng của n là 4
(3) \[n - 1\] là số chính phương
Biết rằng có hai mệnh đề đúng và một mệnh đề sai. Hãy xác định mệnh đề nào, đúng mệnh đề nào sai?
Câu 2:
Câu 4:
Câu 5:
Câu 6:
Đề thi thử Đánh giá năng lực trường ĐHQG Hồ Chí Minh năm 2024 có đáp án (Đề 1)
ĐGNL ĐHQG TP.HCM - Sử dụng ngôn ngữ Tiếng Việt - Chính tả
Đề thi thử Đánh giá năng lực trường ĐHQG Hồ Chí Minh năm 2024 có đáp án (Đề 5)
Đề thi thử Đánh giá năng lực trường ĐHQG Hồ Chí Minh năm 2024 có đáp án (Đề 7)
Bộ 15 đề thi Đánh giá năng lực trường ĐHQG HCM có đáp án (Đề 1)
Đề thi thử Đánh giá năng lực trường ĐHQG Hồ Chí Minh năm 2024 có đáp án (Đề 2)
Đề thi thử Đánh giá năng lực trường ĐHQG Hồ Chí Minh năm 2024 có đáp án (Đề 4)
Đề thi thử Đánh giá năng lực trường ĐHQG Hồ Chí Minh năm 2024 có đáp án (Đề 15)
về câu hỏi!