Câu hỏi:

11/06/2022 1,524 Lưu

Cạnh huyền của \[\Delta ABC\] vuông tại A biết chu vi tam giác là \[12{\mkern 1mu} m\] và tổng bình phương của ba cạnh bằng \[50{\mkern 1mu} m\] là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Phương pháp giải:

Gọi độ dài các cạnh góc vuông của \[\Delta ABC\]\[x,{\mkern 1mu} {\mkern 1mu} y{\mkern 1mu} {\mkern 1mu} \left( m \right),\] độ dài cạnh huyền của \[\Delta ABC\]\[z{\mkern 1mu} {\mkern 1mu} \left( m \right),{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {0 < x,{\mkern 1mu} y < z < 12} \right).\]

Khi đó áp dụng công thức tính chu vi, định lý Pitago và các giả thiết đề bài để lập hệ phương trình.

Giải hệ phương trình, đối chiếu với các điều kiện của ẩn rồi kết luận.

Giải chi tiết:

Gọi độ dài các cạnh góc vuông của \[\Delta ABC\]\[x,{\mkern 1mu} {\mkern 1mu} y{\mkern 1mu} {\mkern 1mu} \left( m \right),\] độ dài cạnh huyền của \[\Delta ABC\]\[z{\mkern 1mu} {\mkern 1mu} \left( m \right),{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {0 < x,{\mkern 1mu} y < z < 12} \right).\]

Chu vi của tam giác là 12m nên ta có phương trình: \[x + y + z = 12{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( 1 \right)\]

Tổng bình phương của ba cạnh của tam giác là \[50m\] nên ta có phương trình: \[{x^2} + {y^2} + {z^2} = 50{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( 2 \right)\]

Áp dụng định lý Pitago ta có phương trình: \[{x^2} + {y^2} = {z^2}{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( 3 \right)\]

Từ (1), (2), (3) ta có hệ phương trình:

\[\left\{ {\begin{array}{*{20}{l}}{x + y + z = 12}\\{{x^2} + {y^2} + {z^2} = 50}\\{{x^2} + {y^2} = {z^2}}\end{array}} \right. \Rightarrow 2{z^2} = 50 \Leftrightarrow {z^2} = 25 \Leftrightarrow z = 5{\mkern 1mu} {\mkern 1mu} {\mkern 1mu} \left( {tm} \right)\]

Vậy độ dài cạnh huyền của tam giác đã cho là 5m.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Phương pháp giải:

Số chính phương có các chữ số tận cùng là \[0,1,4,5,6,9\]. Dùng loại trừ để đưa ra đáp án đúng.

Giải chi tiết:

Ta có số chính phương có các chữ số tận cùng là \[0,1,4,5,6,9\]. Vì vậy

- Nhận thấy giữa mệnh đề (1) và (2) có mâu thuẫn. Bởi vì, giả sử 2 mệnh đề này đồng thời là đúng thì \[n + 8\] có chữ số tận cùng là 2 nên không thể là số chính phương. Vậy trong hai mệnh đề này phải có một mệnh đề là đúng và một mệnh đề là sai.

- Tương tự, nhận thấy giữa mệnh đề (2) và (3) cũng có mâu thuẫn. Bởi vì, giả sử mệnh đề này đồng thời là đúng thì \[n - 1\] có chữ số tận cùng là 3 nên không thể là số chính phương.

Vậy trong ba mệnh đề trên thì mệnh đề (1) và (3) là đúng, còn mệnh đề (2) là sai.

Lời giải

Phương pháp giải:

Tính khối lượng nguyên tố N ít nhất trong 1 bao phân đạm trên.

Suy ra khối lượng ure tương ứng với lượng N trên.

Giải chi tiết:

Khối lượng nguyên tố N trong 1 bao phân đạm trên ít nhất là: \[50 \times 46,3\% = 23,15\left( {kg} \right)\]

Khối lượng ure tương ứng với lượng N trên là: \[\frac{{23,15 \times 60}}{{28}} = 49,6\left( {kg} \right)\]

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP