Câu hỏi:
13/07/2024 2,833
Chứng minh rằng
A = \(\frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{{10}^2}}} < 1\)
Chứng minh rằng
A = \(\frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{{10}^2}}} < 1\)
Câu hỏi trong đề: Đề kiểm tra Giữa học kì 2 Toán 6 có đáp án !!
Quảng cáo
Trả lời:
Chứng minh rằng
A = \(\frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{{10}^2}}} < 1\)
Ta có: \(\frac{1}{{{2^2}}} = \frac{1}{{2.2}} < \frac{1}{{1.2}}\)
\(\frac{1}{{{3^2}}} = \frac{1}{{3.3}} < \frac{1}{{2.3}}\)
\(\frac{1}{{{4^2}}} = \frac{1}{{4.4}} < \frac{1}{{3.4}}\)
…
\(\frac{1}{{{{10}^2}}} = \frac{1}{{10.10}} < \frac{1}{{9.10}}\)
Nên \(\frac{1}{{{2^2}}} + \frac{1}{{{3^2}}} + \frac{1}{{{4^2}}} + ... + \frac{1}{{{{10}^2}}} < \frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{9.10}}\)
A <\(\frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{9.10}}\)
Ta lại có: \(\frac{1}{{1.2}} + \frac{1}{{2.3}} + \frac{1}{{3.4}} + ... + \frac{1}{{9.10}}\) = 1 - \(\frac{1}{2} + \frac{1}{2} - \frac{1}{3} + ... + \frac{1}{9} - \frac{1}{{10}} = 1 - \frac{1}{{10}} = \frac{9}{{10}}\)
Vì \(\frac{9}{{10}} < 1\) nên A < 1
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Ta có ba điểm A, B, C thuộc tia Ox và OA < OB (3 < 6) nên A nằm giữa O và B.
b) Vì A nằm giữa O và B nên AO + BA = OB
Thay số: 3 + AB = 6
AB = 6 – 3
AB = 3cm
Vì A nằm giữa O và B; OA = AB = \(\frac{{OB}}{2} = \frac{6}{2} = 3cm\) nên A là trung điểm của OB
Lời giải
Lời giải:
Xác suất xuất hiện mặt ngửa khi tung đồng xu là:
22 : 50 = \(\frac{{22}}{{50}} = \frac{{22:2}}{{50:2}} = \frac{{11}}{{25}}\)
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.