Câu hỏi:

12/07/2024 1,940

Cho \[A = \frac{1}{{101}} + \frac{1}{{102}} + \frac{1}{{103}} + ... + \frac{1}{{199}} + \frac{1}{{200}}\]. Chứng minh \(\frac{1}{2} < A < 1.\)

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Ta có:

\(\frac{1}{{200}} < \frac{1}{{101}} < \frac{1}{{100}}\)

\(\frac{1}{{200}} < \frac{1}{{102}} < \frac{1}{{100}}\)

\(\frac{1}{{200}} < \frac{1}{{103}} < \frac{1}{{100}}\)

\(\frac{1}{{200}} < \frac{1}{{199}} < \frac{1}{{100}}\)

Suy ra:

\(\frac{1}{{200}} + \frac{1}{{200}} + \frac{1}{{200}} + ... + \frac{1}{{200}} < \frac{1}{{101}} + \frac{1}{{102}} + \frac{1}{{103}} + ... + \frac{1}{{199}} < \frac{1}{{100}} + \frac{1}{{100}} + \frac{1}{{100}} + ... + \frac{1}{{100}}\)

Hay \[99.\frac{1}{{200}} < \frac{1}{{101}} + \frac{1}{{102}} + \frac{1}{{103}} + ... + \frac{1}{{199}} < 99.\frac{1}{{100}}\]

\(\frac{{99}}{{200}} + \frac{1}{{200}} < \frac{1}{{101}} + \frac{1}{{102}} + \frac{1}{{103}} + ... + \frac{1}{{199}} + \frac{1}{{200}} < \frac{{99}}{{100}} + \frac{1}{{100}}\)

\(\frac{{100}}{{200}} < \frac{1}{{101}} + \frac{1}{{102}} + \frac{1}{{103}} + ... + \frac{1}{{199}} + \frac{1}{{200}} < \frac{{100}}{{100}}\)

Do đó \(\frac{{100}}{{200}} < A < \frac{{100}}{{100}}\)

Suy ra \(\frac{1}{2} < A < 1.\)

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải:

Sau ngày thứ nhất thì số trang sách còn lại chiếm số phần là: \(1 - \frac{1}{3} = \frac{2}{3}\) (phần)

Số trang sách An đọc ngày thứ hai chiếm số phần là: \(\frac{5}{8}.\frac{2}{3} = \frac{5}{{12}}\) (phần)

Số trang sách An đọc ngày thứ ba chiếm số phần là: \(\frac{2}{3} - \frac{5}{{12}} = \frac{1}{4}\) (phần)

Cuốn sách có tổng số trang là: \(90:\frac{1}{4} = 360\) (trang).

Lời giải

Hướng dẫn giải

a) Quan sát bảng trên, số lần Minh đã thực hiện lấy ngẫu nhiên một chiếc bút từ hộp là: 39 + 11 = 50 (lần).

Do 39 > 11 nên số lần bút xanh xuất hiện nhiều hơn số lần xuất hiện của bút đỏ.

b) Xác suất của thực nghiệm của các sự kiện lấy được bút xanh là: \(\frac{{39}}{{50}} = 0,78\).

c) Để dự đoán xem trong hộp loại bút nào nhiều hơn ta tính thêm xác suất của thực nghiệm của sự kiện lấy được bút đỏ: \(\frac{{11}}{{50}} = 0,22\).

Do 0,22 < 0,78 nên xác suất của thực nghiệm của các sự kiện lấy được bút xanh lớn hơn bút đỏ

Vậy dự đoán trong hộp bút xanh có nhiều hơn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay