Câu hỏi:

10/08/2022 392

Lớp 6A có 54 học sinh, 6B có 42 và 6C có 48 học sinh, trong ngày khai giảng ba lớp cùng xếp thành 1 số hàng dọc như nhau, mà không có người lẻ hàng. Tính số hàng dọc nhiều nhất có thể xếp được?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Gọi a là số hàng dọc có thể xếp được (a \( \in \)\(\mathbb{N}\), a < 42)

Theo bài ra ta có: 54\( \vdots \)a, 42\( \vdots \)a, 48\( \vdots \)a và a là lớn nhất

Nên a = ƯCLN(54, 42, 48)

Ta phân tích 54; 42; 48 ra thừa số nguyên tố:

54 = 2.33

42 = 2.3.7

48 = 24.3

Ta thấy 2 và 3 là các thừa số nguyên tố chung của 54; 42; 48. Số mũ nhỏ nhất của 2 là 1, số mũ nhỏ nhất của 3 là 1 nên:

ƯCLN(54, 42, 48) = 2.3 = 6

Vậy có thể chia nhiều nhất 6 hàng.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Gọi a là số túi mà Lan có thể chia (a \( \in \)\(\mathbb{N}\), a < 30)

Theo bài ra ta có: 48\( \vdots \)a, 30\( \vdots \)a, 66\( \vdots \)a và a là lớn nhất

Nên a = ƯCLN(48, 30, 66)

Ta phân tích 48; 30; 66 ra thừa số nguyên tố:

48 = 24.3

30 = 2.3.5

66 = 2.3.11

Ta thấy 2; 3 là thừa số nguyên tố chung của 48; 30; 66. Số mũ nhỏ nhất của 2 là 1; số mũ nhỏ nhất của 3 là 1 nên:

ƯCLN(48, 30, 66) = 2.3 = 6

Vậy có thể chia nhiều nhất 6 túi

Số bi đỏ trong mỗi túi là: 48:6 = 8 viên bi.

Lời giải

Đáp án đúng là: B

Gọi số cây mỗi em trồng được là a (a \( \in \)\(\mathbb{N}\), 1 < a < 132)

Theo bài ra ta có: 132\( \vdots \)a, 135\( \vdots \)a. Khi đó a \( \in \)ƯC(132, 135)

Ta phân tích 132; 135 ra thừa số nguyên tố:

132 = 22.3.11

135 = 33.5

Ta thấy 3 là thừa số nguyên tố chung của 132; 135. Số mũ nhỏ nhất của 3 là 1 nên:

ƯCLN(132, 135) = 3

Các ước của 3 là 1; 3

Mà a > 1 nên a = 3

Vậy 6A có 132:3 = 44 học sinh

6B có 135:3 = 45 học sinh

Câu 5

Có 48 bút chì, 64 quyển vở, cô giáo muốn chia số bút và số vở thành 1 số phần thưởng như nhau, có thể chia được nhiều nhất bao nhiêu phần thưởng, số bút và số vở ở mỗi phần thưởng?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Có 48 học sinh nam và 60 học sinh nữ được chia đều thành các nhóm để biểu diễn văn nghệ. Hỏi có thể chia nhiều nhất thành bao nhiêu nhóm? Khi đó mỗi nhóm có bao nhiêu học sinh nam và bao nhiêu học sinh nữ?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay