Câu hỏi:

13/08/2022 644

Chọn ngẫu nhiên 2 học sinh từ một tổ có 9 học sinh. Biết rằng xác suất chọn được 2 học sinh nữ bằng 5/18, hỏi tổ có bao nhiêu học sinh nữ?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Gọi số học sinh nữ là n (2 ≤ n ≤ 9, n N).

Chọn bất kỳ 2 học sinh ta có C92  = 36 cách.

Do đó số phần tử của không gian mẫu là n(Ω) = 36.

Gọi biến cố A: “2 học sinh được chọn là 2 học sinh nữ”.

Để chọn 2 học sinh được 2 học sinh nữ có:

 Cn2=n!2!.(n2)!=n(n1)(n2)!2(n2)! = 1/2  n(n – 1) cách.

Do đó số kết quả thuận lợi cho biến cố A là: n(A) = 1/2  n(n – 1).

Xác suất để chọn được 2 học sinh nữ là:

P(A)=n(A)n(Ω)=12n(n1)36=n(n1)72

Mà theo bài P(A) = 5/18

Do đó ta có:  n(n1)72 = 518

Û n(n – 1) = 20

Û n2 – n – 20 = 0

Û n = 5.

Ta chọn phương án B.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi biến cố A: “3 viên bi lấy ra đều màu đỏ”.

Số cách lấy 3 viên bi từ 20 viên bi là: C203

Do đó số phần tử của không gian mẫu là: n(Ω) =C203  = 1140.

Lấy 3 viên bi màu đỏ từ 8 viên bi đỏ là: C83 .

Số kết quả thuận lợi cho biến cố A là: n(A) = C83  = 56.

Xác suất của biến cố A: “3 viên bi lấy ra đều màu đỏ” là:

P(A) = n(A)n(Ω)=561140=14285

Ta chọn phương án B.

Lời giải

– Tính số phần tử của không gian mẫu:

Lấy 3 viên bi ngẫu nhiên trong 8 viên bi có C83  cách.

Do đó số phần tử của không gian mẫu là n(Ω) =C83= 56.

– Tính số kết quả thuận lợi cho biến cố A:

Lấy được 3 viên bi màu đỏ trong số 5 viên bi màu đỏ có C53  cách.

Do đó, số kết quả thuận lợi cho biến cố A là n(A) =C53  = 10.

Xác suất của biến cố A: “Lấy ra được 3 viên bi màu đỏ” là:

P(A) =  n(A)n(Ω)=1056=528

Vậy xác suất của biến cố A là P(A) = 5/28

Ta chọn phương án B.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Xác suất của biến cố A kí hiệu là P(A). Biến cố A¯ là biến cố đối của A, có xác suất là P(A¯).

Chọn phát biểu sai trong các phát biểu sau:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Chọn khẳng định đúng trong các khẳng định sau:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay