Câu hỏi:

09/09/2022 1,087

Miền nghiệm của bất phương trình 4(x – 1) + 5(y – 3) > 2x – 9 là nửa mặt phẳng không chứa điểm nào sau đây

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: C

Ta có: 4(x – 1) + 5(y – 3) > 2x – 9  4x – 4 + 5y – 15 > 2x – 9 2x + 5y > 10.

Xét điểm (0; 3), có: 2.0 + 5.3 = 15 > 10 thoả mãn bất phương trình 2x + 5y > 10, vậy điểm (0; 3) thuộc miền nghiệm của bất phương trình, đáp án A sai.

Xét điểm (1; 2), có: 2.1 + 5.2 = 12 > 10 thoả mãn bất phương trình 2x + 5y > 10, vậy điểm (1; 2) thuộc miền nghiệm của bất phương trình, đáp án B sai.

Xét điểm (–1; 1), có: 2.(– 1) + 5.1 = 3 < 10 không thoả mãn bất phương trình 2x + 5y > 10, vậy điểm (–1; 1) không thuộc miền nghiệm của bất phương trình, đáp án C đúng.

Xét điểm (2; 5), có: 2.2 + 5.5 = 29 > 10 thoả mãn bất phương trình 2x + 5y > 10, vậy điểm (2; 5) thuộc miền nghiệm của bất phương trình, đáp án D sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Vì cặp số (– 2m; 1) là nghiệm của bất phương trình 2x – y – 3 > 0, nên ta có:

2.( – 2m) – 1 – 3 = – 4m – 4 > 0 m < – 1

Mà m là số nguyên dương nên không tồn tại giá trị của m thỏa mãn điều kiện của phương trình.

Lời giải

Hướng dẫn giải

Đáp án đúng là: A

Ta có: 3x + 2(y + 3) > 4(x + 1) – y + 3 3x + 2y + 6 > 4x + 4 – y + 3

 – x + 3y > 1

Xét đường thẳng – x + 3y – 1 = 0 đi qua 2 điểm A(– 1; 0) và B 0;13 . Lấy điểm O(0; 0) ta có: – 0 + 3.0 = 0 < 1. Vậy miền nghiệm của bất phương trình – x + 3y > 1 là phần không bị gạch ở đáp án A.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Cặp số (2; 3) không là nghiệm của bất phương trình nào sau đây?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Phần không gạch chéo ở hình sau đây là biểu diễn miền nghiệm của hệ bất phương trình nào trong các hệ phương trình sau:

Phần không gạch chéo ở hình sau đây là biểu diễn miền nghiệm của hệ bất phương trình (ảnh 1)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay