Câu hỏi:
13/07/2024 1,683
Cho a = -7, b = 4. Tính giá trị các biểu thức sau và rút ra nhận xét:
A = \({a^2} + 2ab + {b^2}\) và \[B{\rm{ }} = \left( {a + b} \right)\left( {a - b} \right)\;\;\]
Cho a = -7, b = 4. Tính giá trị các biểu thức sau và rút ra nhận xét:
Quảng cáo
Trả lời:
A = \({a^2} + 2ab + {b^2}\) và \[B{\rm{ }} = \left( {a + b} \right)\left( {a - b} \right)\;\;\]
Thay \[a\; = {\rm{ }} - 7,{\rm{ }}b{\rm{ }} = {\rm{ }} - 4\] vào các biểu thức A và B , ta được:
\(A = {\left( { - 7} \right)^2} + 2\left( { - 7} \right)\left( { - 4} \right) + {\left( { - 4} \right)^2} = 49 + 56 + 16 = 121\)
\[B{\rm{ }} = \left( { - 7{\rm{ }} - 4} \right)\left( { - 7 - 4} \right){\rm{ }} = {\rm{ }}\left( { - 11} \right).\left( { - 11} \right){\rm{ }} = 121\]
Vậy \[A{\rm{ }} = {\rm{ }}B\] hay \({a^2} + 2ab + {b^2} = \left( {a + b} \right)\left( {a + b} \right)\)Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
\[A = ax + ay + bx + by\] biết \[a + b = - 2\] , \[x + y = 17\]
Ta có: \[A = ax + ay + bx + by\]\[ = \left( {ax + ay} \right) + \left( {bx + by} \right)\] \[ = a\left( {x + y} \right) + b\left( {x + y} \right)\] \[ = \left( {x + y} \right)\left( {a + b} \right)\]
Thay \[a + b = - 2\] , \[x + y = 17\] vào biểu thức A, ta được:
\[A{\rm{ }} = 17.\left( { - 2} \right){\rm{ }} = {\rm{ }} - 34\]
Lời giải
\[{\rm{ }}a\left( {b - c + d} \right)--ad\; = ab--ac + ad--ad = ab--ac\]
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.