Câu hỏi:
06/10/2022 180Tìm \(n \in {\rm Z}\) biết \[\left( {n + 5} \right) \vdots \left( {n + 1} \right)\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Trả lời:
\[\left( {n + 5} \right) \vdots \left( {n + 1} \right) \Rightarrow (n + 1) + 4 \vdots (n + 1)\]
Vì \[n + 1\, \vdots \,n + 1\] và \[n \in Z\] nên để \[n + 5\, \vdots \,n + 1\]thì \[4\, \vdots \,n + 1\]
Hay \[n + 1 \in U\left( 4 \right) = \left\{ { \pm 1; \pm 2; \pm 4} \right\}\]
Ta có bảng:
Vậy \[n \in \left\{ { - 5; - 3; - 2;0;1;3} \right\}\]
Đáp án cần chọn là: B
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 4:
Câu 7:
Giá trị biểu thức \[M = \left( { - 192873} \right).\left( { - 2345} \right).{\left( { - 4} \right)^5}.0\;\] là
về câu hỏi!