Câu hỏi:
06/10/2022 167Tìm giá trị lớn nhất của biểu thức : \[C = - {\left( {x - 5} \right)^2} + 10\]
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Trả lời:
\[C = - {\left( {x - 5} \right)^2} + 10\]
Ta có : \[{\left( {x - 5} \right)^2} \ge 0,\,\forall x \in \mathbb{Z} \Rightarrow - {\left( {x - 5} \right)^2} \le 0,\;\,\forall x \in \mathbb{Z}\]
\[ \Rightarrow - {\left( {x - 5} \right)^2} + 10 \le 10,\,\;\forall x \in \mathbb{Z}\]
Suy ra \[C \le 10\,\,\forall x \in \mathbb{Z}\]
\[C = 10\] khi \[{\left( {x - 5} \right)^2} = 0 \Rightarrow x - 5 = 0 \Rightarrow x = 5\]
Vậy giá trị lớn nhất của C là 10 khi \[x = 5\] .
Đáp án cần chọn là: D
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Cho các số sau: 1280;−291;43;−52;28;1;0 . Các số đã cho sắp xếp theo thứ tự giảm dần là:
Câu 3:
Bỏ ngoặc rồi tính: \[\left( {52 - 69 + 17} \right) - \left( {52 + 17} \right)\;\] ta được kết quả là
về câu hỏi!