Câu hỏi:

09/10/2022 252 Lưu

Số các cặp số nguyên (x; y) thỏa mãn \[\frac{1}{{18}} < \frac{x}{{12}} < \frac{y}{9} < \frac{1}{4}\] là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Trả lời:

MSC: 36

Khi đó:

\[\frac{1}{{18}} < \frac{x}{{12}} < \frac{y}{9} < \frac{1}{4} \Rightarrow \frac{2}{{36}} < \frac{{x.3}}{{36}} < \frac{{y.4}}{{36}} < \frac{9}{{36}}\]

\[ \Rightarrow 2 < x.3 < y.4 < 9\]

Mà \[\left( {x.3} \right) \vdots 3;\left( {y.4} \right) \vdots 4\] nên \[x.3 \in \left\{ {3;6} \right\};y.4 \in \left\{ {4;8} \right\}\]

Mà x.3 < y.4  nên:

+ Nếu x.3 = 3 thì y.4 = 4 hoặc y.4 = 8

Hay nếu x = 1 thì y = 1 hoặc y = 2

+ Nếu x.3 = 6 thì y.4 = 8

Hay nếu x = 2 thì y = 2

Vậy các cặp số nguyên (x; y) là (1; 1), (1; 2), (2; 2)

Đáp án cần chọn là: B

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời:

Gọi phân số cần tìm là \[\frac{1}{x}\left( {x \in N*} \right)\]

Ta có: \[\frac{1}{6} < \frac{5}{x} < \frac{1}{4}\]

\[ \Rightarrow \frac{5}{{30}} < \frac{5}{x} < \frac{5}{{20}} \Rightarrow 30 > x > 20\] hay \[x \in \left\{ {21;22;...;29} \right\}\]

Số giá trị của x là: (29−21):1+1=9

Vậy có tất cả 9 phân số thỏa mãn bài toán.

Đáp án cần chọn là: A

Lời giải

Trả lời:

\[\frac{{{5^{11}}{{.7}^{12}} + {5^{11}}{{.7}^{11}}}}{{{5^{12}}{{.7}^{12}} + {{9.5}^{11}}{{.7}^{11}}}} = \frac{{{5^{11}}{{.7}^{11}}\left( {7 + 1} \right)}}{{{5^{11}}{{.7}^{11}}\left( {5.7 + 9} \right)}} = \frac{8}{{44}} = \frac{2}{{11}}\]

Do đí a = 2, b = 11 nên a + b = 13

Đáp án cần chọn là: B

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP