Câu hỏi:
19/10/2022 2,042
Cho biến cố A có không gian mẫu là Ω và là biến cố đối của biến cố A. Khẳng định nào sau đây sai?
Cho biến cố A có không gian mẫu là Ω và là biến cố đối của biến cố A. Khẳng định nào sau đây sai?
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: C
⦁ Với mọi biến cố A, ta có 0 ≤ P(A) ≤ 1.
Do đó phương án A, D đúng.
⦁ P(Ω) = 1 và P(∅) = 0.
Do đó phương án B đúng, phương án C sai.
Vậy ta chọn phương án C.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Theo Lí thuyết Xác suất, Nguyên lí xác suất bé được phát biểu như sau:
Nếu một biến cố có xác suất rất bé thì trong một phép thử, biến cố đó sẽ không xảy ra.
Vậy ta chọn phương án D.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
⦁ Biến cố chắc chắn là biến cố luôn xảy ra, kí hiệu là Ω. Do đó phương án B sai.
⦁ Biến cố không thể là biến cố không bao giờ xảy ra, kí hiệu là ∅. Do đó phương án A đúng.
⦁ Phép thử ngẫu nhiên (gọi tắt là phép thử) là một hoạt động mà ta không thể biết trước được kết quả của nó. Do đó phương án C sai.
⦁ Tập hợp tất cả các kết quả có thể có của phép thử ngẫu nhiên được gọi là không gian mẫu. Do đó phương án D sai.
Vậy ta chọn phương án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.