Câu hỏi:
19/10/2022 444Một tổ có 9 học sinh, trong đó có 5 học sinh nam và 4 học sinh nữ được xếp thành hàng dọc. Xác suất sao cho 5 học sinh nam đứng kề nhau là:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Một tổ có 9 học sinh được xếp thành hàng dọc.
Suy ra số phần tử của không gian mẫu là: n(Ω) = 9!.
Gọi biến cố A: “5 học sinh nam đứng kề nhau”.
• Xếp 5 học sinh nam đứng kề nhau thì sẽ có 5! cách xếp.
• Sau đó ta coi 5 học sinh nam là 1 “người A”, rồi xếp “người A” cùng với 4 bạn nữ kia, tức là xếp 5 người, ta lại có 5! cách xếp.
Vì vậy n(A) = 5!.5!.
Vậy xác suất của biến cố A là: .
Ta chọn phương án A.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: C
Gọi biến cố M: “Lấy ra 2 chiếc tất cùng màu”.
Trong giỏ có 5 đôi tất. Ta suy ra trong giỏ có tổng cộng 10 chiếc tất.
Lấy ngẫu nhiên hai chiếc tất trong số 10 chiếc tất trong giỏ (không tính đến thứ tự) thì có .
Suy ra số phần tử của không gian mẫu là: n(Ω) = 45.
Lấy 2 chiếc tất cùng màu từ 10 chiếc tất trong giỏ tức là lấy ra 2 chiếc tất cùng đôi từ giỏ chứa 5 đôi tất.
Khi đó số cách lấy là: .
Suy ra n(M) = 5.
Vậy xác suất của biến cố M là: .
Ta chọn phương án C.
Lời giải
Hướng dẫn giải
Đáp án đúng là: A
+) Gọi số tự nhiên gồm 4 chữ số khác nhau là .
Có tất có 10 chữ số là {0; 1; 2; …; 9}.
• Chọn a có 9 cách chọn từ các chữ số trong {1; 2; …; 8; 9}.
• Chọn 3 chữ số còn lại trong 9 chữ số và xếp vào 3 vị trí b, c, d có cách.
Do đó chọn ngẫu nhiên một số tự nhiên có 4 chữ số khác nhau (có quan tâm đến thứ tự) thì có = 4 536 cách chọn.
Tức là ta có số phần tử của không gian mẫu n(Ω) = 4 536.
+) Số tự nhiên được chọn gồm 4 số 3; 4; 5; 6.
• Chọn a có 4 cách chọn từ các chữ số trong {3; 4; 5; 6}.
• Chọn b có 3 cách chọn một chữ số từ ba chữ số còn lại sau khi chọn a.
• Chọn c có 2 cách chọn một chữ số từ ba chữ số còn lại sau khi chọn a, b.
• Chọn d có 1 cách chọn một chữ số còn lại sau khi chọn a, b, c.
Số phần tử của A là: n(A) = 4.3.2 = 24.
Hoặc ta cũng có thể tính n(A) như sau:
Chọn 4 chữ số trong tập hợp các chữ số {3; 4; 5; 6} và xếp vào 4 vị trí a, b, c, d sẽ có 4! = 24 cách.
Xác suất của biến cố A là: .
Vậy ta chọn phương án A.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
13 câu Trắc nghiệm Tích của vectơ với một số có đáp án (Thông hiểu)
12 Bài tập Ứng dụng của hàm số bậc hai để giải bài toán thực tế (có lời giải)
16 câu Trắc nghiệm Toán 10 Kết nối tri thức Mệnh đề có đáp án
10 Bài tập Ứng dụng ba đường conic vào các bài toán thực tế (có lời giải)
10 Bài tập Tìm hệ số, số hạng trong khai triển nhị thức Newton (có lời giải)
Bộ 2 Đề kiểm tra giữa học kì 2 Toán 10 Kết nối tri thức có đáp án - Đề 1
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)
10 Bài tập Cách xét tính đúng sai của mệnh đề (có lời giải)