Câu hỏi:

29/10/2022 3,710 Lưu

Một kệ sách có 3 quyển sách tham khảo Toán, 2 quyển sách tham khảo Văn và 4 quyển sách tham khảo Tiếng Anh. Bạn Hoa lấy ngẫu nhiên 2 quyển sách để học trong ngày hôm nay. Gọi A là biến cố: “Trong 2 quyển sách có 1 quyển sách Toán và 1 quyển sách Tiếng Anh”. Biến P(A) = 13. Biến cố A¯ là gì và có xác suất bằng bao nhiêu?

A. A¯: “Trong 2 quyển sách được chọn không có sách Toán hoặc Tiếng Anh” và P(A¯) = 23;

B. A¯: “Trong 2 quyển sách được chọn không có sách Toán và Tiếng Anh” và P(A¯) = 23;

C. A¯: “Trong 2 quyển sách được chọn không có sách Toán” và P(A¯) = 13;

D. A¯: “Trong 2 quyển sách được chọn không có Tiếng Anh” và P(A¯) = 13.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

A¯ là biến cố đối của biến cố A nên A¯ là: “Trong 2 quyển sách được chọn không có sách Toán hoặc Tiếng Anh”.

Khi đó P(A¯) = 1 – P(A) = 1 – 13 = 23.

Vậy ta chọn đáp án A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. P(A) là số lớn hơn 0;                 

B. P(A) = 1 – P(A¯);                      

C. P(A) = 0 A = Ω;                   

D. P(A) là số nhỏ hơn 1.

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Đáp án A và D sai vì 0 ≤ P(A) ≤ 1.

Đáo án C sai vì P(A) = 0 A = ∅.

A và A¯ là hai biến cố đối nên P(A) = 1 – P(A¯). Do đó B đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. {S; N; S; N; S; N; S; N};

B. {SS; SN; NS; NN};

C. {SSS; SSN; SNS; SNN; NSS; NSN; NNS; NNN};

D. {S; N}.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP