Câu hỏi:

05/11/2022 254

Cho biết \(\sqrt 2 \) = 1,4142135…. Viết số gần đúng của \(\sqrt 2 \) theo quy tắc làm tròn đến hàng phần nghìn, ước lượng sai số tuyệt đối của số gần đúng ta được kết quả là:

Đáp án chính xác

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 69k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: D

Quy tròn số \(\sqrt 2 \) đến hàng phần nghìn, ta được \(\sqrt 2 \) ≈ 1,414.

\(\sqrt 2 \) < 1,415 nên ta có :

|\(\sqrt 2 \) – 1,414| < |1,415 – 1,414| = 0,001

Vậy sai số tuyệt đối không vượt quá 0,001.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Thực hiện đo chiều dài của bốn cây cầu, kết quả đo đạc nào trong các kết quả sau đây là chính xác nhất?

Xem đáp án » 05/11/2022 2,560

Câu 2:

Số 2,457 là số quy tròn của 2,4571 với sai số tuyệt đối là:

Xem đáp án » 05/11/2022 674

Câu 3:

Trong các số dưới đây, giá trị gần đúng của \(\sqrt {24} - \sqrt[3]{5}\) với sai số tuyệt đối nhỏ nhất là:

Xem đáp án » 05/11/2022 450

Câu 4:

Cho số gần đúng a = 22 648 024 với độ chính xác d = 101. Hãy viết số quy tròn của số a.

Xem đáp án » 05/11/2022 362

Câu 5:

Giả sử biết số đúng là 8 217,3. Sai số tuyệt đối khi quy tròn số này đến hàng chục là:

Xem đáp án » 05/11/2022 307

Câu 6:

Trong một cuộc điều tra dân số, người ta báo cáo số dân của tỉnh A là \(\overline a \) = 1 628 462 ± 140 người. Số quy tròn của số a là:

Xem đáp án » 05/11/2022 302

Bình luận


Bình luận