Câu hỏi:
05/11/2022 1,622Một túi chứa 2 viên bi màu trắng và 3 viên bi màu đen. Lấy ngẫu nhiên 3 viên bi. Xác suất để lấy được ít nhất 1 bi trắng là:
Quảng cáo
Trả lời:
Hướng dẫn giải
Đáp án đúng là: A
Túi chứa tổng số viên bi là: 2 + 3 = 5 (viên)
Ta có: n(Ω) = \(C_5^3 = 10\)
Xét biến cố A: “lấy được ít nhất 1 bi trắng” và biến cố đối \(\overline A \): “Chỉ lấy được toàn viên bi đen”.
Ta có: n(\(\overline A \)) = \(C_3^3 = 1\)
Do đó, \(P(\overline A ) = \frac{{n(\overline A )}}{{n(\Omega )}} = \frac{1}{{10}} = 0,1\)
Vậy P(A) = 1 – P(\(\overline A \)) = 1 – 0,1 = 0,9.
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 10 VietJack - Sách 2025 theo chương trình mới cho 2k9 ( 31.000₫ )
- Trọng tâm Toán, Văn, Anh 10 cho cả 3 bộ KNTT, CTST, CD VietJack - Sách 2025 ( 13.600₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Hướng dẫn giải
Đáp án đúng là: B
Tổng số quả cầu là: 5 + 4 + 3 = 12 (quả)
Biến cố A: “lấy được 3 quả cầu khác màu”
Ta có:
n(Ω) = \(C_{12}^3 = 220\)
n(A) = \(C_5^1.C_4^1.C_3^1 = 60\)
Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{60}}{{220}} = \frac{3}{{11}}\).
Lời giải
Hướng dẫn giải
Đáp án đúng là: D
Rút một lá bài từ bộ bài gồm 52 lá nên ta có n(Ω) = \(C_{52}^1 = 52\)
Một bộ bài 52 lá có 4 lá át (A). Gọi biến cố A: “rút được là át (A)”. Ta có:
n(A) = \(C_4^1 = 4\)
Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{4}{{52}} = \frac{1}{{13}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.