Câu hỏi:

05/11/2022 1,622

Một túi chứa 2 viên bi màu trắng và 3 viên bi màu đen. Lấy ngẫu nhiên 3 viên bi. Xác suất để lấy được ít nhất 1 bi trắng là:

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải

Đáp án đúng là: A

Túi chứa tổng số viên bi là: 2 + 3 = 5 (viên)

Ta có: n(Ω) = \(C_5^3 = 10\)

Xét biến cố A: “lấy được ít nhất 1 bi trắng” và biến cố đối \(\overline A \): “Chỉ lấy được toàn viên bi đen”.

Ta có: n(\(\overline A \)) = \(C_3^3 = 1\)

Do đó, \(P(\overline A ) = \frac{{n(\overline A )}}{{n(\Omega )}} = \frac{1}{{10}} = 0,1\)

Vậy P(A) = 1 – P(\(\overline A \)) = 1 – 0,1 = 0,9.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Hướng dẫn giải

Đáp án đúng là: B

Tổng số quả cầu là: 5 + 4 + 3 = 12 (quả)

Biến cố A: “lấy được 3 quả cầu khác màu”

Ta có:

n(Ω) = \(C_{12}^3 = 220\)

n(A) = \(C_5^1.C_4^1.C_3^1 = 60\)

Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{{60}}{{220}} = \frac{3}{{11}}\).

Câu 2

Lời giải

Hướng dẫn giải

Đáp án đúng là: D

Rút một lá bài từ bộ bài gồm 52 lá nên ta có n(Ω) = \(C_{52}^1 = 52\)

Một bộ bài 52 lá có 4 lá át (A). Gọi biến cố A: “rút được là át (A)”. Ta có:

n(A) = \(C_4^1 = 4\)

Vậy \(P(A) = \frac{{n(A)}}{{n(\Omega )}} = \frac{4}{{52}} = \frac{1}{{13}}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP