Câu hỏi:

11/02/2023 290

Cho đường tròn tâm O bán kính 13cm và dây AB=24cm của đường tròn. Gọi I là trung điểm của AB. Từ AB vẽ hai tiếp tuyến với đường tròn, chúng cắt nhau tại C.

Vẽ hình và tính độ dài của OI.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Media VietJack

Do AB<2R  nên AB không đi qua O.

Xét ΔOAB  có: OA=OB=R  I là trung điểm của AB.

OI là đường trung tuyến đồng thời là đường cao của ΔOAB  cân tại O (tính chất).

OIAB=I

Áp dụng định lý Pytago trong ΔOIB  vuông tại I có: OI2+IB2=OB2 .

OI2=OB2IB2=1322422=25OI=5cm

Vậy: OI=5cm .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Điểm A12;1  thuộc đồ thị hàm số nào trong các hàm số dưới đây?

Lời giải

Đáp án B

Phương pháp

Thay tọa độ điểm A vào lần lượt các đáp án.

Cách giải

Thay tọa độ điểm A12;1  vào phương trình các đường thẳng ta được:

+ Ý A: 1=2.1211=0  (loại).

+ Ý B: 1=2.12+21=1  (đúng)  chọn đáp án B.

Lời giải

Đáp án C

Phương pháp

Áp dụng định lý Pytago trong tam giác vuông.

Cách giải

Gọi cạnh góc vuông nhỏ của tam giác vuông bài cho là aa>0 .

Khi đó cạnh góc vuông còn lại là: 2a.

Áp dụng định lý Pytago ta có cạnh huyền là: a2+2a2=5a2=a5 .

Cạnh huyền gấp 5  lần cạnh góc vuông nhỏ nhất của tam giác đó.

Câu 3

Cho hai đường tròn (O; 4cm) và (I, 6cm). Biết OI=2cm. Tìm vị trí tương đối của hai đường tròn.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Điều kiện của x để biểu thức 3x  có nghĩa là:

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Cho tam giác ABC vuông tại A, đường cao AH. Hệ thức nào dưới đây SAI?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay