Câu hỏi:

27/06/2023 1,954 Lưu

Trong thí nghiệm giao thoa sóng ở mặt nước, hai nguồn kết hợp đặt tại hai điểm \(A\)\(B\) dao động điều hòa cùng pha theo phương thẳng đứng tạo ra hai sóng kết hợp có bước sóng \(4{\rm{\;}}cm\). Khoảng cách giữa hai nguồn là \(AB = 30{\rm{\;}}cm\). \(M\) là điểm ở mặt nước nằm trong hình tròn đường kính \(AB\) là cực đại giao thoa cùng pha với nguồn. \(H\) là trung điểm của \(AB\). Độ dài lớn nhất của đoạn \(MH\) gần nhất với giá trị nào sau đây?

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

ĐK cực đại cùng pha nguồn \(\left\{ \begin{array}{l}MA = {k_1}\lambda = 4{k_1}\\MB = {k_2}\lambda = 4{k_2}\end{array} \right.\) với \({k_1}\), \({k_2}\) nguyên dương. Chuẩn hóa \(\lambda = 1\)

\[M{H^2} = \frac{{M{A^2} + M{B^2}}}{2} - \frac{{A{B^2}}}{4} = \frac{{{4^2}{k_1}^2 + {4^2}{k_2}^2}}{2} - \frac{{{{30}^2}}}{4} < {\left( {\frac{{30}}{2}} \right)^2} \Rightarrow {k_1}^2 + {k_2}^2 < 56,25\]

Xét lần lượt \[{k_1}^2 + {k_2}^2 = 56;55;54;53...\]để tìm \[{\left( {{k_1}^2 + {k_2}^2} \right)_{\max }}\]\({k_1}\), \({k_2}\) nguyên dương

Khi \[{k_1}^2 + {k_2}^2 = 53 \Rightarrow {k_2} = \sqrt {53 - k_1^2} \to \]TABLE START 1 STEP 1

Trong thí nghiệm giao thoa sóng ở mặt nước, hai nguồn kết hợp đặt tại hai điểm  (ảnh 1)Trong thí nghiệm giao thoa sóng ở mặt nước, hai nguồn kết hợp đặt tại hai điểm  (ảnh 2)

 (thỏa mãn)

Vậy \[M{H_{\max }} = \sqrt {\frac{{{4^2}.53}}{2} - \frac{{{{30}^2}}}{4}} \approx 14,11\]. Chọn C

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

\(\omega = 2\pi f = 2\pi .10 = 20\pi \) (rad/s)

\(A = \frac{{{v_{\max }}}}{\omega } = \frac{{30\pi }}{{20\pi }} = 1,5cm = \frac{{{A_b}}}{2} \to \frac{\lambda }{6} = 6 \Rightarrow \lambda = 36cm\)

\(v = \lambda f = 36.10 = 360cm/s = 3,6m/s\). Chọn C

Lời giải

Chọn D

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP