Li độ của một vật dao động điều hòa có biểu thức x = 8cos\(\left( {2\pi t - \pi } \right)\) cm. Độ dài quãng đường mà vật đi được trong khoảng thời gian \(\frac{8}{3}\left( s \right)\) tính từ thời điểm ban đầu là:
Câu hỏi trong đề: 2020 câu Trắc nghiệm tổng hợp Vật lí 2023 có đáp án !!
Quảng cáo
Trả lời:

Lời giải
Pha ban đầu của dao động: \(\varphi = - \pi \)
Chu kì dao động của vật: \(T = \frac{{2\pi }}{\omega } = 1\left( s \right)\)
Tại thời điểm \(t = \frac{8}{3}\left( s \right)\), ta có: \(t = \frac{{8T}}{3} = 2T + \frac{{2T}}{3}\)
Trong khoảng thời gian \(\frac{{2T}}{3}\), vật quay được góc: \(\Delta \varphi = \omega \Delta t = \frac{{2\pi }}{T}.\frac{{2T}}{3} = \frac{{4\pi }}{3}\left( {rad} \right)\)
Biểu diễn trên VTLG ta có:
Từ VTLG, ta thấy quãng đường vật đi được là: \(S = 2.4.8 + 2.8 + \left( {8 - 4} \right) = 84\left( {cm} \right)\)
Đáp án đúng: C
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Lời giải
Ta có:
\(\left\{ \begin{array}{l}{v_{max}} = \omega A\\{a_{max}} = {\omega ^2}A\end{array} \right. \Rightarrow v_{max}^2 = {\omega ^2}{A^2} \Rightarrow \frac{{v_{max}^2}}{{{a_{max}}}} = A = 4\left( {cm} \right)\)
Đáp án đúng: B
Lời giải
Lời giải
Ta có: \(v = \lambda .f \Rightarrow \lambda = \frac{v}{f} = 2\left( m \right)\)
Lại có khoảng cách giữa hai điểm gần nhau nhất dao động ngược pha là \[\frac{1}{2}\] bước sóng => d = 1 m.
Đáp án đúng: B
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.