Câu hỏi:

13/07/2024 663

Một máy bay đang bay ngang với vận tốc V1 ở độ cao h so với mặt đất muốn thả bom trúng một đoàn xe tăng đang chuyển động với vận tốc V2 trong cùng mặt phẳng thẳng đứng với máy bay. Hỏi còn cách xe tăng bao xa thì cắt bom (đó là khoảng cách từ đường thẳng đứng qua máy bay đến xe tăng) khi máy bay và xe tăn­g chuyển động cùng chiều.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Lời giải

Media VietJack

Chọn gốc tọa độ O là điểm cắt bom, t = 0 là lúc cắt bom

Phương trình chuyển động là: \(\left\{ \begin{array}{l}x = {V_1}t\left( 1 \right)\\y = \frac{1}{2}g{t^2}\left( 2 \right)\end{array} \right.\)

Phương trình quỹ đạo: \(y = \frac{1}{2}\frac{g}{{v_0^2}}{x^2}\)

Bom sẽ rơi nhanh theo nhánh Parabol và gặp mặt đường tại B. Bom sẽ trúng xe khi bom và xe cùng lúc đến B.

\( \Rightarrow t = \sqrt {\frac{{2h}}{g}} \)

Lúc t = 0, xe tăng ở A: \(AB = {V_2}t = {V_2}\sqrt {\frac{{2h}}{g}} \)

Khoảng cách khi cắt bom là: \(HA = HB - AB = \left( {{V_1} - {V_2}} \right)\sqrt {\frac{{2h}}{g}} \)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Lời giải

Ta có:

\(\left\{ \begin{array}{l}{v_{max}} = \omega A\\{a_{max}} = {\omega ^2}A\end{array} \right. \Rightarrow v_{max}^2 = {\omega ^2}{A^2} \Rightarrow \frac{{v_{max}^2}}{{{a_{max}}}} = A = 4\left( {cm} \right)\)

Đáp án đúng: B

Lời giải

Lời giải

Ta có: \(v = \lambda .f \Rightarrow \lambda = \frac{v}{f} = 2\left( m \right)\)

Lại có khoảng cách giữa hai điểm gần nhau nhất dao động ngược pha là \[\frac{1}{2}\] bước sóng => d = 1 m.

Đáp án đúng: B

Câu 4

Chọn câu sai trong các phát biểu sau?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay