Câu hỏi:

22/07/2023 1,536

Cho đường thẳng d cố định, xét phép biến hình f biến điểm M thuộc d thành chính nó và biến điểm M không thuộc d thành điểm M’ sao cho d là trung trực của đoạn MM’. Hãy chứng minh f là một phép dời hình.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho đường thẳng d cố định, xét phép biến hình f biến điểm M thuộc d thành chính nó và biến điểm M không thuộc d thành điểm M’ sao cho d là trung trực của đoạn MM’. Hãy chứng minh f là một phép dời hình. (ảnh 1)

• Phép biến hình f biến 1 điểm thuộc d thành chính nó, do đó khoảng cách giữa hai điểm bất kì thuộc d qua phép biến hình f được bảo toàn (1)

• Lấy hai điểm M, N bất kì không thuộc d.

Ta có M’ = f(M) và N’ = f(N).

Gọi H, K lần lượt là trung điểm của MM’ và NN’.

Suy ra MH+M'H=0;  KN+KN'=0.

Ta có:

MN+M'N'=MH+HK+KN+M'H+HK+KN'

                      =MH+M'H+KN+KN'+2HK

                      =0+0+2HK (do H, K lần lượt là trung điểm của MM’, NN’)

                      =2HK.

MNM'N'=HNHMHN'HM'.

                      =HNHMHN'+HM'

                      =HNHN'+HM'HM=N'N+MM'.

Khi đó MN2M'N'2=MN+M'N'MNM'N'

                                  =2HKN'N+MM'

                                  =2HK.N'N+2HK.MM'=2.0+2.0=0 

(do d là đường trung trực của MM’, NN’ nên MM'HK;  NN'HK).

Suy ra MN2=M'N'2.

Do đó MN = M’N’ (2)

Từ (1) và (2) suy ra phép biến hình f bảo toàn khoảng cách giữa hai điểm bất kì.

Vậy f là một phép dời hình.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho đường thẳng d đi qua tâm O của đường tròn (C) và cắt (C) tại A và B. Tìm ảnh của đường tròn (C) qua phép chiếu vuông góc lên d. (ảnh 1)

Ta đặt f là phép chiếu vuông góc lên d.

Vì A, B là giao điểm của đường thẳng d và đường tròn (C) nên A = f(A), B = f(B) (1)

Lấy điểm M (C) sao cho M ≠ A và M ≠ B.

Kẻ MM’ d tại M’.

Khi đó ta có M’ = f(M).

Mà AB là đường kính của đường tròn (C) nên M’ nằm trên đoạn thẳng AB.

Tương tự như vậy, mỗi điểm N bất kì di động trên đường tròn (C) sao cho N ≠ A và N ≠ B thì ảnh N’ của N qua f đều nằm trên đoạn thẳng AB (2)

Từ (1), (2), ta thu được ảnh của đường tròn (C) qua phép chiếu vuông góc lên d là đoạn thẳng AB hay f((C)) = AB.

Lời giải

Lấy hai điểm bất kì M(x1; y1) và N(x2; y2).

Suy ra MN=x2x12+y2y12.

– Ta có ảnh của M, N qua phép biến hình f lần lượt là M’(–x1; –y1), N’(–x2; –y2).

Khi đó M'N'=x2+x12+y2+y12=x2x12+y2y12=MN.

Vì vậy f là một phép dời hình.

– Ta có ảnh của M, N qua phép biến hình g lần lượt là M’(2x1; 2y1), N’(2x2; 2y2).

Khi đó M'N'=2x22x12+2y22y12=4x2x12+4y2y12.

=2x2x12+y2y12=2MNMN.

Vì vậy g không phải là một phép dời hình.

Vậy trong hai phép biến hình đã cho, phép dời hình là f.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay