Câu hỏi:
12/07/2024 657Sử dụng sơ đồ ở Hình 1 để trả lời các câu hỏi dưới đây:
a) Từ thành phố A, hãng X có bao nhiêu đường bay đến năm thành phố còn lại?
b) Giữa sáu thành phố trên, có tất cả bao nhiêu đường bay của hãng X?
c) Có thể giải đáp thắc mắc ở Hoạt động khởi động không?
Sale Tết giảm 50% 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 49k/cuốn).
Sách đề toán-lý-hóa Sách văn-sử-địa Tiếng anh & các môn khác
Quảng cáo
Trả lời:
a) Quan sát sơ đồ ở Hình 1, ta thấy:
⦁ Có 1 đường bay từ thành phố A đến thành phố B;
⦁ Có 1 đường bay từ thành phố A đến thành phố D;
⦁ Có 1 đường bay từ thành phố A đến thành phố E;
⦁ Có 1 đường bay từ thành phố A đến thành phố F.
Vậy từ thành phố A, hãng X có tất cả 4 đường bay đến năm thành phố còn lại.
b) Vì đường bay của hãng X là đường bay hai chiều nên đường bay từ thành phố B đến thành phố A đã được tính vào đường bay từ thành phố A đến thành phố B.
Do đó từ thành phố B, hãng X có thêm:
⦁ 1 đường bay đến thành phố C;
⦁ 1 đường bay đến thành phố D;
⦁ 1 đường bay đến thành phố F.
Khi đó, từ thành phố B, hãng X có thêm 3 đường bay đến năm thành phố còn lại.
Tương tự như vậy, ta được:
– Từ thành phố C, hãng X có thêm 2 đường bay đến năm thành phố còn lại;
– Từ thành phố D, hãng X có thêm 1 đường bay đến năm thành phố còn lại;
– Từ thành phố E, hãng X có thêm 1 đường bay đến năm thành phố còn lại.
Vì đường bay của hãng X là đường bay hai chiều nên đường bay từ thành phố F đến năm thành phố còn lại đã được tính vào các đường bay kể trên.
Vậy giữa sáu thành phố trên, có tất cả 4 + 3 + 2 + 1 + 1 = 11 đường bay của hãng X.
Chú ý: Ngoài cách trên, ta có thể đếm số đường cong và đường thẳng (thể hiện đường bay) trên Hình 1 (hoặc Bảng 1) để kết luận về số đường bay của hãng X.
c) Ta có thể giải đáp thắc mắc ở Hoạt động khởi động như sau:
Bước 1: Từ thành phố A bay đến thành phố B;
Bước 2: Từ thành phố B bay đến thành phố C;
Bước 3: Từ thành phố C bay đến thành phố D;
Bước 4: Từ thành phố D bay đến thành phố F;
Bước 5: Từ thành phố F bay đến thành phố E;
Bước 6: Từ thành phố E bay về thành phố A.
Vậy từ thành phố A, ta có thể thăm năm thành phố B, C, D, E và F bằng các chuyến bay của hãng X sao cho mỗi thành phố chỉ qua đúng một lần, rồi quay trở về A.
Chú ý: Ta có thể thay đổi thứ tự bay đến các thành phố chỉ cần hãng X có chuyến bay giữa hai thành phố liền kề.
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Một đồ thị có bốn đỉnh có bậc lần lượt là 2; 3; 4; 3. Tính số cạnh của đồ thị và vẽ đồ thị này.
Câu 2:
Biết rằng G là đồ thị có 6 đỉnh, 8 cạnh và các đỉnh của nó có bậc 2 hoặc 4. Đồ thị có bao nhiêu đỉnh bậc 4? Hãy vẽ một đồ thị như vậy.
Câu 3:
Cho đồ thị như Hình 11.
a) Hãy chỉ ra bậc của tất cả các đỉnh và tìm tổng của chúng.
b) Tìm tất cả các đỉnh kề với đỉnh B. Số đỉnh này có bằng bậc của đỉnh B không?
Câu 4:
Cho đồ thị như Hình 13.
a) Chỉ ra bậc của các đỉnh của đồ thị.
b) Chỉ ra các đỉnh bậc lẻ của đồ thị.
c) Tính tổng tất cả các bậc của các đỉnh của đồ thị.
Câu 5:
Hãy chỉ ra các đỉnh, các cạnh, số đỉnh, số cạnh của mỗi đồ thị như Hình 12.
Câu 6:
Đồ thị ở Hình 6 biểu diễn năm ngôi làng A, B, C, D và E cùng các con đường giữa chúng (mỗi cạnh biểu diễn một con đường giữa hai ngôi làng). Biết rằng mỗi con đường ra, vào làng đều phải đi qua một cổng chào; hai con đường khác nhau thì ra, vào làng qua hai cổng chào khác nhau. Ngoài ra, các ngôi làng không còn cổng chào nào khác.
a) Ngôi làng nào có ít cổng chào nhất? Ngôi làng nào có nhiều cổng chào nhất?
b) Năm ngôi làng có tất cả bao nhiêu cổng chào?
Câu 7:
Có năm học sinh An, Bình, Mai, Quang, Xuân. Biết rằng An quen Bình, Bình quen Quang, An quen Mai, Mai quen Xuân, Xuân quen Quang. Các cặp không được liệt kê ở trên thì không quen nhau. Hãy vẽ đồ thị để thể hiện mối quan hệ quen nhau giữa các học sinh trên.
10 Bài tập Tính xác suất của biến cố hợp của hai biến cố bất kì bằng cách sử dụng công thức cộng xác suất và phương pháp tổ hợp (có lời giải)
10 Bài tập Vận dụng đạo hàm cấp hai để giải quyết một số bài toán thực tiễn (có lời giải)
10 Bài tập Bài toán thực tiễn liên quan đến thể tích (có lời giải)
20 câu trắc nghiệm Toán 11 Kết nối tri thức Mẫu số liệu ghép nhóm có đáp án
Bài tập Hình học không gian lớp 11 cơ bản, nâng cao có lời giải (P11)
12 câu Trắc nghiệm Toán 11 Kết nối tri thức Giá trị lượng giác của góc lượng giác có đáp án
Bộ 20 đề thi học kì 1 Toán 11 năm 2022 - 2023 có đáp án (Đề 1)
100 câu trắc nghiệm Phép dời hình cơ bản (phần 1)
về câu hỏi!