Câu hỏi:
26/08/2023 2,389
Cho hình chóp tam giác đều S.ABC có các mặt bên là các tam giác đều diện tích 10 cm2, diện tích mặt đáy là 20 cm2. Tính diện tích toàn phần của hình chóp đó.
Quảng cáo
Trả lời:
Lời giải
Đáp án đúng là: A
Diện tích toàn phần của hình chóp tam giác đều bằng tổng diện tích xung quanh và diện tích đáy.
Vậy diện tích toàn phần của hình chóp S.ABC là
\[{S_{tp}} = {S_{xq}} + {S_{day}} = 3\,.10 + 20 = 50\,\,\left( {c{m^2}} \right)\]
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Lời giải
Đáp án đúng là: C
Diện tích xung quanh của hình chóp tứ giác đều bằng tổng diện tích các mặt bên.
Mà hình chóp tứ giác đều có 4 mặt bên nên
\[{S_{xq}} = S\,.\,4 = \left( {\frac{1}{2}.\,5\,.\,4} \right)\,.\,4 = 40\,\,\left( {c{m^2}} \right)\].
Lời giải
Lời giải
Đáp án đúng là: A
Diện tích đáy của hình chóp là :\[50\,.\,3:6 = 25\,\,\left( {c{m^2}} \right)\]
Gọi x là độ dài cạnh đáy, vì đáy hình chóp tứ giác đều là hình vuông nên ta có \[{{\rm{x}}^{\rm{2}}}{\rm{ = 25}} \Rightarrow {\rm{x = 5}}\,\,{\rm{cm}}\].
Diện tích một mặt bên là: \[S = \frac{1}{2}.\,5\,.\,4 = 10\,\,(c{m^2})\]
Diện tích xung quanh của hình chóp trên là: \[{S_{xq}} = 4S = 4.10 = 40\,\,(c{m^2})\]Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.