Câu hỏi:

11/07/2024 9,670 Lưu

Quan sát bảng tần số ghép nhóm bao gồm cả tần số tích luỹ ở Ví dụ 6 rồi cho biết:

Nhóm

Tần số

Tần số tích lũy

[30; 40)

[40; 50)

[50; 60)

[60; 70)

[70; 80)

[80; 90)

2

10

16

8

2

2

1

12

28

36

38

40

 

n = 40

 

Bảng 13

a) Nhóm nào có tần số lớn nhất;

b) Đầu mút trái và độ dài của nhóm có tần số lớn nhất bằng bao nhiêu.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Từ bảng tần số ghép nhóm và tần số tích lũy ta có:

a) Nhóm 3 là nhóm [50; 60) có tần số lớn nhất.

b) Nhóm [50; 60) có đầu mút trái là 50, độ dài là 10.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Bảng tần số ghép nhóm bao gồm giá trị đại diện và tần số tích lũy như sau:

Nhóm

Giá trị đại diện

Tần số

Tần số tích lũy

[30; 40)

35

4

4

[40; 50)

45

10

14

[50; 60)

55

14

28

[60; 70)

65

6

34

[70; 80)

75

4

38

[80; 90)

85

2

40

 

 

n = 40

 

Số trung bình cộng của mẫu số liệu ghép nhóm đã cho là:

x¯=354+4510+5514+656+754+85240=55,5.

Số phần tử của mẫu là n = 40. Ta có n2=402=20.

Mà 14 < 20 < 28 nên nhóm 3 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 20.

Xét nhóm 3 là nhóm [50; 60) có r = 50, d = 10, n3 = 14 và nhóm 2 là nhóm [40; 50) có cf2 = 14.

Áp dụng công thức, ta có trung vị của mẫu số liệu là:

Me=50+2014141054,29 (cm).

Do đó tứ phân vị thứ hai là Q2 = Me ≈ 54,29 (cm).

Ta có n4=404=10. Mà 4 < 10 < 14 nên nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 10.

Xét nhóm 2 là nhóm [40; 50) có s = 40; h = 10; n2 = 10 và nhóm 1 là nhóm [30; 40) có cf1 = 4.

Áp dụng công thức, ta có tứ phân vị thứ nhất là:

Q1=40+1041010=46 (cm).

Ta có 3n4=3404=30. Mà 28 < 30 < 34 nên nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 30.

Xét nhóm 4 là nhóm [60; 70) có t = 60; l = 10; n4 = 6 và nhóm 3 là nhóm [50; 60) có cf3 = 28.

Áp dụng công thức, ta có tứ phân vị thứ ba là:

Q3=60+302861063,33 (cm).