Câu hỏi:

11/07/2024 17,826

Một hộp có 12 viên bi có cùng kích thước và khối lượng, trong đó có 7 viên bi màu xanh và 5 viên bi màu vàng. Chọn ngẫu nhiên 5 viên bi từ hộp đó. Tính xác suất để trong 5 viên bi được chọn có ít nhất 2 viên bi màu vàng.

Sách mới 2k7: Bộ 20 đề minh họa Toán, Lí, Hóa, Văn, Sử, Địa…. form chuẩn 2025 của Bộ giáo dục (chỉ từ 110k).

20 đề Toán 20 đề Văn Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

− Mỗi cách chọn ra đồng thời 5 viên bi trong hộp có 12 viên bi cho ta một tổ hợp chập 5 của 12 phần tử. Do đó, không gian mẫu gồm các tổ hợp chập 5 của 12 phần tử và nΩ=C125=792.

− Xét biến cố A: “Trong 5 viên bi được chọn có ít nhất 2 viên bi màu vàng”.

Khi đó biến cố đối của biến cố A là A¯: “Trong 5 viên bi không có viên bi màu vàng hoặc có 1 viên bi màu vàng”.

Trường hợp 1: Trong 5 viên bi không có viên bi màu vàng.

C75=21 cách chọn.

Trường hợp 1: Trong 5 viên bi có 1 viên bi màu vàng.

C51C74=175 cách chọn.

Như vậy, số kết quả thuận lợi cho biến cố A¯ là: nA¯=21+175=196.

Suy ra PA¯=nA¯nΩ=196792=49198. 

Do đó PA=1PA¯=149198=149198.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Tung một đồng xu cân đối và đồng chất hai lần liên tiếp. Xét các biến cố:

A: “Lần thứ nhất xuất hiện mặt ngửa”;

B : “Lần thứ hai xuất hiện mặt ngửa”;

C: “Cả hai lần đều xuất hiện mặt ngửa”;

D : “Có ít nhất một lần xuất hiện mặt ngửa”.

Trong hai biến cố C, D biến cố nào là biến cố hợp của hai biến cố A, B? Biến cố nào là biến cố giao của hai biến cố A, B?

Xem đáp án » 11/07/2024 21,612

Câu 2:

Chọn ngẫu nhiên một số tự nhiên có hai chữ số. Tính xác suất của biến cố M: “Số tự nhiên có hai chữ số được viết ra chia hết cho 11 hoặc chia hết cho 12”.

Xem đáp án » 11/07/2024 20,853

Câu 3:

Trong một chiếc hộp có 20 viên bi có cùng kích thước và khối lượng, trong đó có 9 viên bi màu đỏ, 6 viên bi màu xanh và 5 viên bi màu vàng. Lấy ngẫu nhiên đồng thời 3 viên bi. Tìm xác suất để 3 viên bi lấy ra có đúng hai màu.

Xem đáp án » 11/07/2024 16,710

Câu 4:

Hai bạn Việt và Nam cùng tham gia một kì thi trắc nghiệm môn Toán và môn Tiếng Anh một cách độc lập nhau. Đề thi của mỗi môn gồm 6 mã đề khác nhau và các môn khác nhau thì mã đề cũng khác nhau. Đề thi được sắp xếp và phát cho học sinh một cách ngẫu nhiên. Tính xác suất để hai bạn Việt và Nam có chung đúng một mã đề thi trong kì thi đó.

Xem đáp án » 11/07/2024 8,772

Câu 5:

Chọn ngẫu nhiên một số nguyên dương không vượt quá 20. Xét biến cố A: “Số được viết ra là số chia hết cho 2” và biến cố B: “Số được viết ra là số chia hết cho 7”.

a) Tính P(A), P(B), P(A B) và P(A ∩ B).

b) So sánh P(A B) và P(A) + P(B) – P(A ∩ B).

Xem đáp án » 11/07/2024 6,812

Câu 6:

Gieo ngẫu nhiên một xúc xắc cân đối và đồng chất một lần (Hình 1).

Gieo ngẫu nhiên một xúc xắc cân đối và đồng chất một lần (Hình 1).    Xét các biến cố ngẫu nhiên: A: “Mặt xuất hiện của xúc xắc có số chấm là số chẵn”; B: “Mặt xuất hiện của xúc xắc có số chấm là số chia hết cho 3”; C: “Mặt xuất hiện của xúc xắc có số chấm là số chẵn hoặc chia hết cho 3”. Biến cố C có liên hệ như thế nào với hai biến cố A và B? (ảnh 1)

Xét các biến cố ngẫu nhiên:

A: “Mặt xuất hiện của xúc xắc có số chấm là số chẵn”;

B: “Mặt xuất hiện của xúc xắc có số chấm là số chia hết cho 3”;

C: “Mặt xuất hiện của xúc xắc có số chấm là số chẵn hoặc chia hết cho 3”.

Biến cố C có liên hệ như thế nào với hai biến cố A và B?

Xem đáp án » 11/07/2024 6,607

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store