Câu hỏi:

11/07/2024 21,773

Hai bạn Việt và Nam cùng tham gia một kì thi trắc nghiệm môn Toán và môn Tiếng Anh một cách độc lập nhau. Đề thi của mỗi môn gồm 6 mã đề khác nhau và các môn khác nhau thì mã đề cũng khác nhau. Đề thi được sắp xếp và phát cho học sinh một cách ngẫu nhiên. Tính xác suất để hai bạn Việt và Nam có chung đúng một mã đề thi trong kì thi đó.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

− Chọn 1 mã đề thi trong 6 mã đề thi môn Toán cho bạn Việt có 6 cách.

Chọn 1 mã đề thi trong 6 mã đề thi môn Tiếng Anh cho bạn Việt có 6 cách.

Chọn 1 mã đề thi trong 6 mã đề thi môn Toán cho bạn Nam có 6 cách.

Chọn 1 mã đề thi trong 6 mã đề thi môn Tiếng Anh cho bạn Nam có 6 cách.

Do đó không gian mẫu của phép thử có số phần tử là 64, tức là n(Ω) = 64.

− Gọi A là biến cố: “Hai bạn Việt và Nam có chung đúng một mã đề thi trong kì thi đó”.

Trường hợp 1: Hai bạn trùng mã đề thi môn Toán, không trùng mã đề thi môn Tiếng Anh.

Bạn Việt chọn 1 mã đề thi trong 6 mã đề thi môn Toán có 6 cách; chọn 1 mã đề thi trong 6 mã đề thi môn Tiếng Anh có 6 cách.

Bạn Nam chọn 1 mã đề thi môn Toán trùng với mã đề thi bạn Việt đã cho có 1 cách; chọn 1 mã đề thi trong 5 mã đề thi môn Tiếng Anh (trừ mã đề thi bạn Việt đã chọn) có 5 cách.

Như vậy, có 6.6.1.5 = 180 cách.

Trường hợp 2: Hai bạn trùng mã đề thi môn Tiếng Anh, không trùng mã đề thi môn Toán.

Tương tự trường hợp 1, cũng có 6.1.6.5 = 180 cách.

Như vậy, số kết quả thuận lợi cho biến cố A là: n(A) = 180 + 180 = 360.

Vậy xác suất của biến cố A là:

PA=nAnΩ=36064=518.

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có: Ω = {10; 11; 12; …; 99}.

Không gian mẫu của phép thử có 99101+1=90 phần tử, tức là n(Ω) = 90.

Xét các biến cố:

M: “Số tự nhiên có hai chữ số được viết ra chia hết cho 11 hoặc chia hết cho 12”.

A: “Số tự nhiên có hai chữ số được viết ra chia hết cho 11”;

B: “Số tự nhiên có hai chữ số được viết ra chia hết cho 12”;

Khi đó M = A B và A ∩ B =

Do hai biến cố A và B xung khắc nên n(M) = n(A B) = n(A) + n(B).

Số các kết quả thuận lợi cho biến cố A là n(A) = 9.

Số các kết quả thuận lợi cho biến cố B là n(B) = 8.

Số các kết quả thuận lợi cho biến cố M là: n(M) = 9 + 8 = 17.

Suy ra PM=nMnΩ=1790.

Lời giải

− Mỗi cách chọn ra đồng thời 5 viên bi trong hộp có 12 viên bi cho ta một tổ hợp chập 5 của 12 phần tử. Do đó, không gian mẫu gồm các tổ hợp chập 5 của 12 phần tử và nΩ=C125=792.

− Xét biến cố A: “Trong 5 viên bi được chọn có ít nhất 2 viên bi màu vàng”.

Khi đó biến cố đối của biến cố A là A¯: “Trong 5 viên bi không có viên bi màu vàng hoặc có 1 viên bi màu vàng”.

Trường hợp 1: Trong 5 viên bi không có viên bi màu vàng.

C75=21 cách chọn.

Trường hợp 1: Trong 5 viên bi có 1 viên bi màu vàng.

C51C74=175 cách chọn.

Như vậy, số kết quả thuận lợi cho biến cố A¯ là: nA¯=21+175=196.

Suy ra PA¯=nA¯nΩ=196792=49198. 

Do đó PA=1PA¯=149198=149198.

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay