Câu hỏi:
13/07/2024 5,618Chọn ngẫu nhiên 3 trong số 24 đỉnh của một đa giác đều 24 cạnh. Tính xác suất của biến cố "3 đỉnh được chọn là 3 đỉnh của một tam giác cân hoặc một tam giác vuông".
Sách mới 2k7: 30 đề đánh giá năng lực DHQG Hà Nội, Tp. Hồ Chí Minh, BKHN 2025 mới nhất (600 trang - chỉ từ 140k).
Quảng cáo
Trả lời:
Chọn ngẫu nhiên 3 trong số 24 đỉnh của một đa giác đều 24 cạnh có cách chọn.
Gọi biến cố A “3 đỉnh được chọn là 3 đỉnh của một tam giác cân” và biến cố B “3 đỉnh được chọn là 3 đỉnh của một tam giác vuông”.
Biến cố AB “3 đỉnh được chọn là 3 đỉnh của một tam giác vuông cân”.
Biến cố A B “3 đỉnh được chọn là 3 đỉnh của một tam giác cân hoặc một tam giác vuông”.
Số tam giác đều được tạo thành từ các đỉnh của một đa giác đều 24 đỉnh là 8 tam giác.
Nhận thấy đường chéo qua tâm đi qua đỉnh tam giác cân sẽ đi qua đỉnh đối diện và đường chéo này là trục đối xứng của tam giác cân nên hai đỉnh còn lại sẽ đối xứng qua trục.
Đường chéo này chia đường tròn thành 2 nửa đường tròn, trên mỗi nửa đường tròn có 11 điểm nên sẽ có 11 cặp điểm đối xứng qua đường chéo, do đó sẽ có 11 tam giác cân tại đỉnh đã chọn (trong đó có 1 tam giác đều).
Vậy số tam giác cân không đều là 24×10 = 240 (tam giác).
Số kết quả thuận lợi cho biến cố A là 240 + 8 = 248.
Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác cân là .
Gọi (O) là đường tròn ngoại tiếp đa giác đều đó.
Mỗi tam giác vuông có 3 đỉnh là 3 đỉnh của đa giác thì cạnh huyền của tam giác vuông phải là đường kính của (O), do đó có 12 cách chọn đường kính.
Với mỗi cách chọn đường kính có 22 cách chọn đỉnh góc vuông (22 đỉnh còn lại của đa giác).
Vậy số tam giác vuông thỏa mãn là 12×22 = 264 (tam giác).
Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác vuông là .
Ứng với mỗi đường kính ta có 2 cách chọn đỉnh sao cho 3 đỉnh tạo thành tam giác vuông cân. Do đó có 12×2 = 24 (tam giác vuông cân).
Xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác vuông cân là
Do đó xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác cân hoặc một tam giác vuông là: .
Vậy xác suất để 3 đỉnh được chọn là 3 đỉnh của một tam giác cân hoặc một tam giác vuông là .
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Gieo 2 con xúc xắc cân đối và đồng chất. Gọi A là biến cố "Tích số chấm xuất hiện là số lẻ". Biến cố nào sau đây xung khắc với biến cố A?
A. "Xuất hiện hai mặt có cùng số chấm".
B. "Tổng số chấm xuất hiện là số lẻ".
C. "Xuất hiện ít nhất một mặt có số chấm là số lẻ".
D. "Xuất hiện hai mặt có số chấm khác nhau".
Câu 2:
Cho A và B là hai biến cố độc lập. Biết P(A) = 0,4 và P(B) = 0,5. Xác suất của biến cố P(A B) là
A. 0,9.
B. 0,7.
C. 0,5.
D. 0,2.
Câu 3:
Gieo 2 con xúc xắc cân đối và đồng chất. Xác suất của biến cố "Tổng số chấm xuất hiện trên hai con xúc xắc chia hết cho 5" là
A. .
B. .
C. .
D. .
Câu 4:
Một hộp có 5 quả bóng xanh, 6 quả bóng đỏ và 4 quả bóng vàng có kích thước và khối lượng như nhau. Chọn ra ngẫu nhiên từ hộp 4 quả bóng. Tính xác suất của các biến cố:
A: "Cả 4 quả bóng lấy ra có cùng màu";
B: "Trong 4 bóng lấy ra có đủ cả 3 màu".
Câu 5:
Chọn ngẫu nhiên 2 đỉnh của một hình bát giác đều nội tiếp trong đường tròn tâm O bán kính R. Xác suất để khoảng cách giữa hai đỉnh đó bằng là
A. .
B. .
C. .
D. .
Câu 6:
Gieo 2 con xúc xắc cân đối và đồng chất. Tính xác suất của biến cố "Tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 6".
về câu hỏi!