Câu hỏi:
16/11/2023 754
Cho tam giác MNP, trên MN lấy hai điểm D, E sao cho MD = DE = EN. Gọi I là trung điểm NP, PD cắt MI tại H. Khẳng định nào sau đây là đúng?
Cho tam giác MNP, trên MN lấy hai điểm D, E sao cho MD = DE = EN. Gọi I là trung điểm NP, PD cắt MI tại H. Khẳng định nào sau đây là đúng?
Quảng cáo
Trả lời:
Đáp án đúng là: B

Trong tam giác NDP có I là trung điểm NP, E là trung điểm DN (DE = EN).
Do đó EI là đường trung bình của tam giác NDP.
Suy ra EI // PD và (tính chất đường trung bình của tam giác) (1).
Trong tam giác MEI có D là trung điểm ME (MD = DE), DH // EI (H ∈ DP).
Suy ra H là trung điểm của MI.
Nên HD là đường trung bình của tam giác MEI.
Suy ra (tính chất đường trung bình của tam giác) (2).
Từ (1) và (2) suy ra .
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Đáp án đúng là: D

Trong tam giác MNP có:
+ D là trung điểm của NP, DE // MP, E ∈ MN.
Do đó E là trung điểm của MN (tính chất đường trung bình của tam giác).
Suy ra ME = EN = MN (1).
+ D là trung điểm của NP, DF // MN, F ∈ MP.
Do đó F là trung điểm của MP (tính chất đường trung bình của tam giác).
Suy ra MF = FP = MP (2).
Mà tam giác MNP cân tại M nên MN = MP (3).
Từ (1), (2), (3) suy ra ME = EN = MF = FP.
Lời giải
Đáp án đúng là: A

Vì tam giác ABC cân tại A nên AH vừa là đường cao vừa là đường trung tuyến.
Suy ra H là trung điểm của BC.
Trong tam giác ABC có H là trung điểm của BC, I là trung điểm của AC.
Do đó HI là đường trung bình của tam giác ABC.
Suy ra HI // AB (tính chất đường trung bình của tam giác).
Vì K ∈ HI nên HK // AB.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.