Câu hỏi:

25/02/2024 5,899

Một xạ thủ bắn lần lượt 2 viên đạn vào một bia. Xác suất trúng đích của viên thứ nhất và viên thứ hai lần lượt là 0,8 và 0,7. Biết rằng kết quả các lần bắn là độc lập với nhau. Xác suất của biến cố "Cả hai lần bắn đều trúng đích" là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: B

Gọi A là biến cố “Lần 1 bắn trúng đích” và biến cố B “Lần 2 bắn trúng đích”.

Ta có sơ đồ hình cây:

Một xạ thủ bắn lần lượt 2 viên đạn vào một bia. Xác suất trúng đích của viên thứ nhất và viên thứ hai lần lượt là 0,8 và 0,7. (ảnh 1)

Khi đó AB là biến cố “Cả hai lần bắn đều trúng đích".

Vì kết quả các lần bắn là độc lập với nhau nên P(AB) = P(A).P(B) = 0,8 . 0,7 = 0,56.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Đáp án đúng là: B

Gọi A là biến cố “An đạt điểm giỏi môn Toán” và B là biến cố “Bình đạt điểm giỏi môn Toán”.

Do đó A và B là hai biến cố độc lập, nên hai biến cố   A¯ và  B¯ độc lập.

Ta có  PA¯=1PA=10,92=0,08 và  PB¯=1PB=10,88=0,12.

An và Bình không quen biết nhau và học ở hai nơi khác nhau. Xác suất để An và Bình đạt điểm giỏi (ảnh 1)

Ta có  A¯B¯ là biến cố: "Cả An và Bình đều không đạt điểm giỏi môn Toán".

Do đó  PA¯B¯=PA¯.PB¯=0,08.0,12=0,0096.

Lời giải

Đáp án đúng là: B

Gọi A là biến cố: "Xạ thủ thứ nhất bắn trúng bia" và B là biến cố: "Xạ thủ thứ hai bắn trúng bia". Khi đó A, B,  A¯B¯ là các biến cố độc lập đôi một với nhau.

Ta có:   PA¯=1PA=112=12PB¯=1PB=113=23.

Hai xạ thủ cùng bắn vào bia một cách độc lập với nhau. Xác suất bắn trúng bia của xạ thủ thứ nhất (ảnh 1)

Xét biến cố: “Xạ thủ thứ nhất bắn trúng bia, xạ thủ thứ hai bắn trật bia” là biến cố AB¯.

Do A và  B¯. là hai biến cố độc lập nên xác suất biến cố AB¯ là:

 PAB¯=PA.PB¯=12.23=13.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay