Câu hỏi:

10/04/2024 646

a) Biết ${\log _x}y = 2$. Tính giá trị của ${\log _{{x^2}y}}\frac{{{x^4}}}{{y\sqrt y }}$.

b) Tìm $m$ nguyên để hàm số \[f\left( x \right) = {\left( {2{x^2} + mx + 2} \right)^{\frac{3}{2}}}\] xác định với mọi $x \in \mathbb{R}$.

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

a) (0,5 điểm)

Ta có ${\log _x}y = 2 \Rightarrow y = {x^2};\,\,x,\,y > 0,\,x \ne 1$.

Vậy ${\log _{{x^2}y}}\frac{{{x^4}}}{{y\sqrt y }} = {\log _{{x^4}}}\frac{{{x^4}}}{{{x^3}}} = {\log _{{x^4}}}x = \frac{1}{4}$.

b) (0,5 điểm)

Hàm số \[f\left( x \right) = {\left( {2{x^2} + mx + 2} \right)^{\frac{3}{2}}}\] xác định với mọi $x \in \mathbb{R}$

$ \Leftrightarrow 2{x^2} + mx + 2 > 0,x \in \mathbb{R}$

$ \Leftrightarrow \Delta < 0 \Leftrightarrow {m^2} - 16 < 0$$ \Leftrightarrow - 4 < m < 4$.

$m$ nguyên nên \[m \in \left\{ { - 3\,; - 2\,; - 1\,;0\,;1\,;2\,;3} \right\}\].

Vậy có tất cả \[7\] giá trị $m$ thỏa mãn điều kiện đề bài.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn B

Câu 2

Lời giải

Chọn A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP