Câu hỏi:
13/07/2024 207
Cho hình chóp \[S.ABC\] có đáy là tam giác \[ABC\] vuông cân tại \[B\], \[SA \bot \left( {ABC} \right)\]. Gọi \[H\] là hình chiếu của \[A\] lên \[SB\].
a) Chứng minh rằng \[AH \bot \left( {SBC} \right)\].
b) Tính góc giữa hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBC} \right)\], biết \[SA = AB = a\].
Cho hình chóp \[S.ABC\] có đáy là tam giác \[ABC\] vuông cân tại \[B\], \[SA \bot \left( {ABC} \right)\]. Gọi \[H\] là hình chiếu của \[A\] lên \[SB\].
a) Chứng minh rằng \[AH \bot \left( {SBC} \right)\].
b) Tính góc giữa hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBC} \right)\], biết \[SA = AB = a\].
Quảng cáo
Trả lời:

a) Ta có \[\left\{ \begin{gathered}
BC \bot SA \hfill \\
BC \bot AB \hfill \\
\end{gathered} \right. \Rightarrow BC \bot \left( {SAB} \right) \Rightarrow BC \bot AH\].
Ta lại có \[\left\{ \begin{gathered}
AH \bot SB \hfill \\
AH \bot BC \hfill \\
\end{gathered} \right. \Rightarrow AH \bot \left( {SBC} \right)\].
b) Gọi \[M\] là trung điểm của \[AC\] và \[N\] là hình chiếu của \[M\] trên \[SC\].
Ta có \[MB \bot AC \Rightarrow MB \bot \left( {SAC} \right) \Rightarrow MB \bot SC\].
Từ đó suy ra $SC \bot \left( {MNB} \right)$ nên $SC \bot MN$.
Do đó \[\left( {\left( {SAC} \right),\left( {SBC} \right)} \right) = \widehat {MNB}\].
Gọi \[K\] là hình chiếu của \[A\] lên \[SC\].
Ta tính được \[MB = \frac{{a\sqrt 2 }}{2}\]; \[AK = \frac{{SA \cdot AC}}{{SC}} = \frac{{a\sqrt 6 }}{3} \Rightarrow MN = \frac{{a\sqrt 6 }}{6}\].
Ta có \[\tan \widehat {MNB} = \frac{{MB}}{{MN}} = \frac{{\frac{{a\sqrt 2 }}{2}}}{{\frac{{a\sqrt 6 }}{6}}} = \sqrt 3 \Rightarrow \widehat {MNB} = 60^\circ \].
Vậy góc giữa hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBC} \right)\] bằng \[60^\circ \].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.