Câu hỏi:

10/04/2024 246

Cho hình chóp \[S.ABCD\] có đáy là hình chữ nhật với \[AB = a,BC = a\sqrt 3 \]. Hai mặt phẳng \[\left( {SAC} \right)\]\[\left( {SBD} \right)\] cùng vuông góc với đáy. Điểm \[I\] thuộc đoạn \[SC\] sao cho \[SC = 3IC\]. Tính khoảng cách giữa hai đường thẳng \[AI\]\[SB\] biết rằng \[AI\] vuông góc với \[SC\].

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Cho hình chóp S.ABCD có đáy là hình chữ nhật với (ảnh 1)

Cho hình chóp S.ABCD có đáy là hình chữ nhật với (ảnh 2)

Gọi \[O\] là tâm hình chữ nhật \[ABCD\], \[(SAC) \cap (SBD) = SO\] suy ra \[SO \bot \left( {ABCD} \right)\].

Ta có \[AC = \sqrt {A{B^2} + B{C^2}} = 2a \Rightarrow OC = a\].

Mà .

Kẻ \[IM{\text{//}}SB\left( {M \in BC} \right) \Rightarrow SB{\text{//}}\left( {AIM} \right)\], suy ra

\[d\left( {SB,AI} \right) = d\left( {SB,\left( {AIM} \right)} \right) = d\left( {B,\left( {AIM} \right)} \right)\].

Kẻ \[IH{\text{//}}SO\left( {H \in OC} \right) \Rightarrow IH \bot \left( {ABCD} \right)\]\[\frac{{HC}}{{OC}} = \frac{{IC}}{{SC}} = \frac{1}{3}\].

 Ta có \[d\left( {B,\left( {AIM} \right)} \right) = 2d\left( {C,\left( {AIM} \right)} \right) = 2 \cdot \frac{6}{5}d\left( {H,\left( {AIM} \right)} \right) = \frac{{12}}{5}h\].

Kẻ \[HE{\text{//}}AD,HF{\text{//}}DC{\text{   }}\left( {E,F \in AM} \right) \Rightarrow HE \bot HF\]$IH \bot \left( {HEF} \right)$ nên \[H.IEF\] là tứ diện vuông tại \[H\].

Ta có \[\frac{1}{{{h^2}}} = \frac{1}{{H{I^2}}} + \frac{1}{{H{E^2}}} + \frac{1}{{H{F^2}}}\]

với $IH = \frac{1}{3}SO = \frac{{a\sqrt 5 }}{3}$; \[HE = \frac{5}{6}MC = \frac{5}{6} \cdot \frac{1}{3}BC = \frac{{5a\sqrt 3 }}{{18}};\]\[HF = \frac{5}{4}MN = \frac{5}{4}.\frac{1}{3}AB = \frac{5}{{12}}a\].

 Suy ra \[\frac{1}{{{h^2}}} = \frac{1}{{H{I^2}}} + \frac{1}{{H{E^2}}} + \frac{1}{{H{F^2}}} = \frac{{297}}{{25{a^2}}} \Rightarrow h = \frac{{5a}}{{3\sqrt {33} }}\].

Vậy ta có \[d\left( {AI,SB} \right) = \frac{{12}}{5} \cdot \frac{{5a}}{{3\sqrt {33} }} = \frac{{4a}}{{\sqrt {33} }}\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

Lời giải

Chọn B

Câu 2

Lời giải

Chọn A

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP