Câu hỏi:
10/04/2024 246
Cho hình chóp \[S.ABCD\] có đáy là hình chữ nhật với \[AB = a,BC = a\sqrt 3 \]. Hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBD} \right)\] cùng vuông góc với đáy. Điểm \[I\] thuộc đoạn \[SC\] sao cho \[SC = 3IC\]. Tính khoảng cách giữa hai đường thẳng \[AI\] và \[SB\] biết rằng \[AI\] vuông góc với \[SC\].
Cho hình chóp \[S.ABCD\] có đáy là hình chữ nhật với \[AB = a,BC = a\sqrt 3 \]. Hai mặt phẳng \[\left( {SAC} \right)\] và \[\left( {SBD} \right)\] cùng vuông góc với đáy. Điểm \[I\] thuộc đoạn \[SC\] sao cho \[SC = 3IC\]. Tính khoảng cách giữa hai đường thẳng \[AI\] và \[SB\] biết rằng \[AI\] vuông góc với \[SC\].
Quảng cáo
Trả lời:

Gọi \[O\] là tâm hình chữ nhật \[ABCD\], \[(SAC) \cap (SBD) = SO\] suy ra \[SO \bot \left( {ABCD} \right)\].
Ta có \[AC = \sqrt {A{B^2} + B{C^2}} = 2a \Rightarrow OC = a\].
Mà .
Kẻ \[IM{\text{//}}SB\left( {M \in BC} \right) \Rightarrow SB{\text{//}}\left( {AIM} \right)\], suy ra
\[d\left( {SB,AI} \right) = d\left( {SB,\left( {AIM} \right)} \right) = d\left( {B,\left( {AIM} \right)} \right)\].
Kẻ \[IH{\text{//}}SO\left( {H \in OC} \right) \Rightarrow IH \bot \left( {ABCD} \right)\] và \[\frac{{HC}}{{OC}} = \frac{{IC}}{{SC}} = \frac{1}{3}\].
Ta có \[d\left( {B,\left( {AIM} \right)} \right) = 2d\left( {C,\left( {AIM} \right)} \right) = 2 \cdot \frac{6}{5}d\left( {H,\left( {AIM} \right)} \right) = \frac{{12}}{5}h\].
Kẻ \[HE{\text{//}}AD,HF{\text{//}}DC{\text{ }}\left( {E,F \in AM} \right) \Rightarrow HE \bot HF\] mà $IH \bot \left( {HEF} \right)$ nên \[H.IEF\] là tứ diện vuông tại \[H\].
Ta có \[\frac{1}{{{h^2}}} = \frac{1}{{H{I^2}}} + \frac{1}{{H{E^2}}} + \frac{1}{{H{F^2}}}\]
với $IH = \frac{1}{3}SO = \frac{{a\sqrt 5 }}{3}$; \[HE = \frac{5}{6}MC = \frac{5}{6} \cdot \frac{1}{3}BC = \frac{{5a\sqrt 3 }}{{18}};\]\[HF = \frac{5}{4}MN = \frac{5}{4}.\frac{1}{3}AB = \frac{5}{{12}}a\].
Suy ra \[\frac{1}{{{h^2}}} = \frac{1}{{H{I^2}}} + \frac{1}{{H{E^2}}} + \frac{1}{{H{F^2}}} = \frac{{297}}{{25{a^2}}} \Rightarrow h = \frac{{5a}}{{3\sqrt {33} }}\].
Vậy ta có \[d\left( {AI,SB} \right) = \frac{{12}}{5} \cdot \frac{{5a}}{{3\sqrt {33} }} = \frac{{4a}}{{\sqrt {33} }}\].
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn B
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.