Câu hỏi:

16/04/2024 110

Cho hình vuông \(\left( {{C_1}} \right)\) có cạnh bằng \(a.\) Người ta chia mỗi cạnh của hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông \(\left( {{C_2}} \right)\) (xem hình vẽ). Từ hình vuông \(\left( {{C_2}} \right)\) lại tiếp tục làm như trên ta nhận được dãy các hình vuông \({C_1},\,\,{C_2},\,\,{C_3},\,...,\,{C_n},\,...\). Gọi \({S_i}\) là diện tích của hình vuông \({C_i}\,\,\left( {i \in \left\{ {1;\,\,2;\,\,3;\,\,...} \right\}} \right)\). Đặt \(T = {S_1} + {S_2} + {S_3} + ... + {S_n} + ...\). Biết \(T = \frac{{32}}{3}\), tính \(a.\)
 

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hình vuông đầu tiên \(\left( {{C_1}} \right)\) có cạnh bằng \(a\) và diện tích là \({S_1} = {a^2}\).

Từ đề bài, ta thấy cạnh của hình vuông \(\left( {{C_2}} \right)\)\({a_2} = \sqrt {{{\left( {\frac{3}{4}a} \right)}^2} + {{\left( {\frac{1}{4}a} \right)}^2}} = \frac{{a\sqrt {10} }}{4}\).

Khi đó diện tích của hình vuông \(\left( {{C_2}} \right)\)\({S_2} = {\left( {\frac{{a\sqrt {10} }}{4}} \right)^2} = \frac{5}{8}{a^2} = \frac{5}{8}{S_1}\).

Cạnh của hình vuông \(\left( {{C_3}} \right)\)\({a_3} = \sqrt {{{\left( {\frac{3}{4}{a_2}} \right)}^2} + {{\left( {\frac{1}{4}{a_2}} \right)}^2}} = \frac{{{a_2}\sqrt {10} }}{4} = a{\left( {\frac{{\sqrt {10} }}{4}} \right)^2} = \frac{5}{8}a.\)

Khi đó diện tích của hình vuông \(\left( {{C_3}} \right)\)\({S_3} = {\left( {\frac{5}{8}a} \right)^2} = {\left( {\frac{5}{8}} \right)^2}{a^2} = {\left( {\frac{5}{8}} \right)^2}{S_1}.\)

Lý luận tương tự ta có \({S_1},\,\,{S_2},\,\,{S_3},\,\,...,\,{S_n},\,...\) tạo thành một dãy cấp số nhân \({u_1} = {S_1} = {a^2}\) và công bội \(q = \frac{5}{8}\).

\(\left| q \right| = \frac{5}{8} < 1\) nên \({S_1},\,\,{S_2},\,\,{S_3},\,\,...,\,{S_n},\,...\) là một cấp số nhân lùi vô hạn với \({u_1} = {S_1} = {a^2}\) và công bội \(q = \frac{5}{8}.\)

Tổng của cấp số nhân lùi vô hạn này là

\(T = {S_1} + {S_2} + {S_3} + ... + {S_n} + ...\)\( = \frac{{{S_1}}}{{1 - q}} = \frac{{{a^2}}}{{1 - \frac{5}{8}}} = \frac{{8{a^2}}}{3}\).

\(T = \frac{{32}}{3}\) nên \(\frac{{8{a^2}}}{3} = \frac{{32}}{3} \Leftrightarrow {a^2} = 4\). Suy ra \(a = 2\) (do độ dài cạnh là số dương).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Chọn mệnh đề đúng trong các mệnh đề sau.

Xem đáp án » 16/04/2024 1,905

Câu 2:

Tập xác định của hàm số \[y = \tan \left( {x + \frac{\pi }{3}} \right)\]

Xem đáp án » 16/04/2024 927

Câu 3:

Trong các mệnh đề sau, mệnh đề nào sai?

Xem đáp án » 16/04/2024 783

Câu 4:

Cho tứ diện \(ABCD,\) vị trí tương đối của hai đường thẳng \(AC\)\(BD\)

Xem đáp án » 16/04/2024 560

Câu 5:

Cho \(\sin x = \frac{2}{3}\). Giá trị của biểu thức \(P = \sin 2x.\cos x\) bằng

Xem đáp án » 16/04/2024 381

Câu 6:

Công thức nghiệm của phương trình \(\cos x = \cos \alpha \)

Xem đáp án » 16/04/2024 370

Câu 7:

Cho hình lăng trụ \[ABC.{A_1}{B_1}{C_1}.\] Trong các khẳng định sau, khẳng định nào sai?

Xem đáp án » 16/04/2024 369

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

tailieugiaovien.com.vn