Câu hỏi:
16/04/2024 1,118
Cho hình vuông \(\left( {{C_1}} \right)\) có cạnh bằng \(a.\) Người ta chia mỗi cạnh của hình vuông thành bốn phần bằng nhau và nối các điểm chia một cách thích hợp để có hình vuông \(\left( {{C_2}} \right)\) (xem hình vẽ). Từ hình vuông \(\left( {{C_2}} \right)\) lại tiếp tục làm như trên ta nhận được dãy các hình vuông \({C_1},\,\,{C_2},\,\,{C_3},\,...,\,{C_n},\,...\). Gọi \({S_i}\) là diện tích của hình vuông \({C_i}\,\,\left( {i \in \left\{ {1;\,\,2;\,\,3;\,\,...} \right\}} \right)\). Đặt \(T = {S_1} + {S_2} + {S_3} + ... + {S_n} + ...\). Biết \(T = \frac{{32}}{3}\), tính \(a.\)
Câu hỏi trong đề: Đề kiểm tra Cuối kì 1 Toán 11 Cánh Diều có đáp án !!
Quảng cáo
Trả lời:
Hình vuông đầu tiên \(\left( {{C_1}} \right)\) có cạnh bằng \(a\) và diện tích là \({S_1} = {a^2}\).
Từ đề bài, ta thấy cạnh của hình vuông \(\left( {{C_2}} \right)\) là \({a_2} = \sqrt {{{\left( {\frac{3}{4}a} \right)}^2} + {{\left( {\frac{1}{4}a} \right)}^2}} = \frac{{a\sqrt {10} }}{4}\).
Khi đó diện tích của hình vuông \(\left( {{C_2}} \right)\) là \({S_2} = {\left( {\frac{{a\sqrt {10} }}{4}} \right)^2} = \frac{5}{8}{a^2} = \frac{5}{8}{S_1}\).
Cạnh của hình vuông \(\left( {{C_3}} \right)\) là \({a_3} = \sqrt {{{\left( {\frac{3}{4}{a_2}} \right)}^2} + {{\left( {\frac{1}{4}{a_2}} \right)}^2}} = \frac{{{a_2}\sqrt {10} }}{4} = a{\left( {\frac{{\sqrt {10} }}{4}} \right)^2} = \frac{5}{8}a.\)
Khi đó diện tích của hình vuông \(\left( {{C_3}} \right)\) là \({S_3} = {\left( {\frac{5}{8}a} \right)^2} = {\left( {\frac{5}{8}} \right)^2}{a^2} = {\left( {\frac{5}{8}} \right)^2}{S_1}.\)
Lý luận tương tự ta có \({S_1},\,\,{S_2},\,\,{S_3},\,\,...,\,{S_n},\,...\) tạo thành một dãy cấp số nhân \({u_1} = {S_1} = {a^2}\) và công bội \(q = \frac{5}{8}\).
Vì \(\left| q \right| = \frac{5}{8} < 1\) nên \({S_1},\,\,{S_2},\,\,{S_3},\,\,...,\,{S_n},\,...\) là một cấp số nhân lùi vô hạn với \({u_1} = {S_1} = {a^2}\) và công bội \(q = \frac{5}{8}.\)
Tổng của cấp số nhân lùi vô hạn này là
\(T = {S_1} + {S_2} + {S_3} + ... + {S_n} + ...\)\( = \frac{{{S_1}}}{{1 - q}} = \frac{{{a^2}}}{{1 - \frac{5}{8}}} = \frac{{8{a^2}}}{3}\).
Mà \(T = \frac{{32}}{3}\) nên \(\frac{{8{a^2}}}{3} = \frac{{32}}{3} \Leftrightarrow {a^2} = 4\). Suy ra \(a = 2\) (do độ dài cạnh là số dương).
Hot: Học hè online Toán, Văn, Anh...lớp 1-12 tại Vietjack với hơn 1 triệu bài tập có đáp án. Học ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn A
Lời giải
Chọn D
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.