Câu hỏi:
16/04/2024 110Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Hình vuông đầu tiên \(\left( {{C_1}} \right)\) có cạnh bằng \(a\) và diện tích là \({S_1} = {a^2}\).
Từ đề bài, ta thấy cạnh của hình vuông \(\left( {{C_2}} \right)\) là \({a_2} = \sqrt {{{\left( {\frac{3}{4}a} \right)}^2} + {{\left( {\frac{1}{4}a} \right)}^2}} = \frac{{a\sqrt {10} }}{4}\).
Khi đó diện tích của hình vuông \(\left( {{C_2}} \right)\) là \({S_2} = {\left( {\frac{{a\sqrt {10} }}{4}} \right)^2} = \frac{5}{8}{a^2} = \frac{5}{8}{S_1}\).
Cạnh của hình vuông \(\left( {{C_3}} \right)\) là \({a_3} = \sqrt {{{\left( {\frac{3}{4}{a_2}} \right)}^2} + {{\left( {\frac{1}{4}{a_2}} \right)}^2}} = \frac{{{a_2}\sqrt {10} }}{4} = a{\left( {\frac{{\sqrt {10} }}{4}} \right)^2} = \frac{5}{8}a.\)
Khi đó diện tích của hình vuông \(\left( {{C_3}} \right)\) là \({S_3} = {\left( {\frac{5}{8}a} \right)^2} = {\left( {\frac{5}{8}} \right)^2}{a^2} = {\left( {\frac{5}{8}} \right)^2}{S_1}.\)
Lý luận tương tự ta có \({S_1},\,\,{S_2},\,\,{S_3},\,\,...,\,{S_n},\,...\) tạo thành một dãy cấp số nhân \({u_1} = {S_1} = {a^2}\) và công bội \(q = \frac{5}{8}\).
Vì \(\left| q \right| = \frac{5}{8} < 1\) nên \({S_1},\,\,{S_2},\,\,{S_3},\,\,...,\,{S_n},\,...\) là một cấp số nhân lùi vô hạn với \({u_1} = {S_1} = {a^2}\) và công bội \(q = \frac{5}{8}.\)
Tổng của cấp số nhân lùi vô hạn này là
\(T = {S_1} + {S_2} + {S_3} + ... + {S_n} + ...\)\( = \frac{{{S_1}}}{{1 - q}} = \frac{{{a^2}}}{{1 - \frac{5}{8}}} = \frac{{8{a^2}}}{3}\).
Mà \(T = \frac{{32}}{3}\) nên \(\frac{{8{a^2}}}{3} = \frac{{32}}{3} \Leftrightarrow {a^2} = 4\). Suy ra \(a = 2\) (do độ dài cạnh là số dương).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 2:
Tập xác định của hàm số \[y = \tan \left( {x + \frac{\pi }{3}} \right)\] là
Câu 4:
Cho tứ diện \(ABCD,\) vị trí tương đối của hai đường thẳng \(AC\) và \(BD\) là
Câu 5:
Câu 7:
Cho hình lăng trụ \[ABC.{A_1}{B_1}{C_1}.\] Trong các khẳng định sau, khẳng định nào sai?
về câu hỏi!