Câu hỏi:

12/07/2024 1,336

Cho tứ diện \(ABCD\), trên \(AC\)\(AD\) lấy hai điểm \(M,\,\,N\) sao cho \(MN\) không song song với \(CD.\) Gọi \(O\) là điểm bên trong tam giác \(BCD\).

a) Tìm giao tuyến của hai mặt phẳng \(\left( {OMN} \right)\)\(\left( {BCD} \right)\).

b) Tìm giao điểm của \(BC\) với \(\left( {OMN} \right)\).

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ diện ABCD, trên AC và AD lấy hai điểm (ảnh 1)

a) Trong mặt phẳng \(\left( {ACD} \right)\)\(MN\) không song song với \(CD\) nên \(MN \cap CD = E\).

\( \Rightarrow \left\{ \begin{array}{l}E \in MN \subset \left( {OMN} \right)\\E \in CD \subset \left( {BCD} \right)\end{array} \right.\), suy ra \(E \in \left( {OMN} \right) \cap \left( {BCD} \right).\)

\(O\) là điểm bên trong tam giác \(BCD\) nên \(O \in \left( {OMN} \right) \cap \left( {BCD} \right).\)

Từ các kết quả trên ta có \(OE = \left( {OMN} \right) \cap \left( {BCD} \right).\)

b) Trong mặt phẳng \(\left( {BCD} \right),\)gọi \(K = OE \cap BC.\)

\(\left\{ \begin{array}{l}K \in BC\\K \in OE \subset \left( {OMN} \right)\end{array} \right.\) nên \(K = BC \cap \left( {OMN} \right)\).

Bình luận


Bình luận

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

\(\lim \frac{1}{{5n + 3}}\) bằng

Xem đáp án » 16/04/2024 11,875

Câu 2:

Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \(\left| {{u_n} - 2} \right| < \frac{1}{{{n^3}}}\) với mọi \(n \in {\mathbb{N}^*}\). Khi đó

Xem đáp án » 16/04/2024 4,046

Câu 3:

Cho góc \[\alpha \] thỏa mãn \[\sin \alpha = \frac{1}{2}.\] Giá trị của \(P = \cos 2\alpha \)

Xem đáp án » 16/04/2024 1,471

Câu 4:

Trong các dãy số sau, dãy số nào không phải là cấp số cộng?

Xem đáp án » 16/04/2024 1,287

Câu 5:

Hàm số nào sau đây liên tục trên \(\mathbb{R}?\)

Xem đáp án » 16/04/2024 888

Câu 6:

Cho đường thẳng \(a\) nằm trong mặt phẳng \(\left( \alpha \right)\) và đường thẳng \(b\) nằm trong mặt phẳng \(\left( \beta \right)\). Nếu \(\left( \alpha \right){\rm{//}}\left( \beta \right)\) thì mệnh đề nào dưới đề nào sau đây sai?

Xem đáp án » 16/04/2024 771
Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay