Câu hỏi:

12/07/2024 1,013

Cho tứ diện \(ABCD\), trên \(AC\)\(AD\) lấy hai điểm \(M,\,\,N\) sao cho \(MN\) không song song với \(CD.\) Gọi \(O\) là điểm bên trong tam giác \(BCD\).

a) Tìm giao tuyến của hai mặt phẳng \(\left( {OMN} \right)\)\(\left( {BCD} \right)\).

b) Tìm giao điểm của \(BC\) với \(\left( {OMN} \right)\).

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho tứ diện ABCD, trên AC và AD lấy hai điểm (ảnh 1)

a) Trong mặt phẳng \(\left( {ACD} \right)\)\(MN\) không song song với \(CD\) nên \(MN \cap CD = E\).

\( \Rightarrow \left\{ \begin{array}{l}E \in MN \subset \left( {OMN} \right)\\E \in CD \subset \left( {BCD} \right)\end{array} \right.\), suy ra \(E \in \left( {OMN} \right) \cap \left( {BCD} \right).\)

\(O\) là điểm bên trong tam giác \(BCD\) nên \(O \in \left( {OMN} \right) \cap \left( {BCD} \right).\)

Từ các kết quả trên ta có \(OE = \left( {OMN} \right) \cap \left( {BCD} \right).\)

b) Trong mặt phẳng \(\left( {BCD} \right),\)gọi \(K = OE \cap BC.\)

\(\left\{ \begin{array}{l}K \in BC\\K \in OE \subset \left( {OMN} \right)\end{array} \right.\) nên \(K = BC \cap \left( {OMN} \right)\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

\(\lim \frac{1}{{5n + 3}}\) bằng

Xem đáp án » 16/04/2024 6,826

Câu 2:

Cho dãy số \(\left( {{u_n}} \right)\) thỏa mãn \(\left| {{u_n} - 2} \right| < \frac{1}{{{n^3}}}\) với mọi \(n \in {\mathbb{N}^*}\). Khi đó

Xem đáp án » 16/04/2024 2,623

Câu 3:

Cho góc \[\alpha \] thỏa mãn \[\sin \alpha = \frac{1}{2}.\] Giá trị của \(P = \cos 2\alpha \)

Xem đáp án » 16/04/2024 726

Câu 4:

Trong các dãy số sau, dãy số nào không phải là cấp số cộng?

Xem đáp án » 16/04/2024 630

Câu 5:

Cho đường thẳng \(a\) nằm trong mặt phẳng \(\left( \alpha \right)\) và đường thẳng \(b\) nằm trong mặt phẳng \(\left( \beta \right)\). Nếu \(\left( \alpha \right){\rm{//}}\left( \beta \right)\) thì mệnh đề nào dưới đề nào sau đây sai?

Xem đáp án » 16/04/2024 510

Câu 6:

a) Cho biết \(\sin x = \frac{3}{4}.\) Tính giá trị của biểu thức \(P = {\sin ^2}2x.\)

b) Giải phương trình \(\sin 2x - \cos \left( {x - \frac{\pi }{6}} \right) = 0.\)

Xem đáp án » 12/07/2024 472

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store