Câu hỏi:

17/04/2024 299

Cho hình chóp $S.ABCD$ có đáy $ABCD$ là hình bình hành. Trên cạnh $SC$$AB$ lần lượt lấy hai điểm $I$$J$ sao cho $CI = \frac{2}{3}SC$$BJ = \frac{2}{3}AB.$

a) Tìm giao điểm của đường thẳng $SD$ và mặt phẳng $\left( {ABI} \right).$

b) Chứng minh rằng $IJ{\text{//}}\left( {SAD} \right).$

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành (ảnh 1)

a) Ta có: $I \in SC$$SC \subset \left( {SCD} \right) \Rightarrow I \in \left( {SCD} \right).$

$I \in \left( {ABI} \right).$

$ \Rightarrow I \in \left( {ABI} \right) \cap \left( {SCD} \right).$

Hơn nữa: $AB{\text{//}}CD;$ $AB \subset \left( {ABI} \right)$$CD \subset \left( {SCD} \right).$

$ \Rightarrow d = \left( {ABI} \right) \cap \left( {SCD} \right)$ sao cho $d$ đi qua $I$ và song song với $AB,\,CD.$

Trong $\left( {SCD} \right)$ gọi $K = d \cap SD.$

Khi đó $K \in d$\[d \subset \left( {ABI} \right).\]

$ \Rightarrow K = SD \cap \left( {ABI} \right).$

b) Ta có: $CI = \frac{2}{3}SC \Rightarrow SI = \frac{1}{3}SC \Rightarrow \frac{{SI}}{{SC}} = \frac{1}{3};$

               $BJ = \frac{2}{3}AB \Rightarrow AJ = \frac{1}{3}AB \Rightarrow \frac{{AJ}}{{AB}} = \frac{1}{3}.$

$ \Rightarrow \frac{{SI}}{{SC}} = \frac{{AJ}}{{AB}} = \frac{1}{3}.$

Lại có: $KI{\text{//}}CD$ (do $d{\text{//}}CD$) nên theo hệ quả định lí Thalés có:

$\frac{{KI}}{{CD}} = \frac{{SI}}{{SC}} \Rightarrow \frac{{KI}}{{CD}} = \frac{{AJ}}{{AB}}.$

Mặt khác $CD = AB$ (do $ABCD$ là hình bình hành).

$ \Rightarrow KI = AJ.$

$KI{\text{//}}AJ$ (do $d{\text{//AB}}$)                  

Suy ra $AKIJ$ là hình bình hành.

$ \Rightarrow IJ{\text{//}}AK.$

Hơn nữa: $AK \subset \left( {SAD} \right)$$IJ \not\subset \left( {SAD} \right).$

Từ đó ta có $IJ{\text{//}}\left( {SAD} \right).$

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Theo quy luật trang trí một hình vuông trên thì ta có các tam giác được tô màu sẽ là tam giác vuông cân.

Gọi ${u_n}$ là diện tích của hai tam giác được tô màu sau lần vẽ thứ $n$, với $n \in {\mathbb{N}^*}.$

Độ dài cạnh góc vuông của hai tam giác vuông cân được tô màu theo lần vẽ đầu tiên là $\frac{4}{2} = 2\,\,\,\left( {\text{m}} \right).$ Khi đó diện tích của hai tam giác được tô màu sau lần vẽ đầu tiên là

${u_1} = 2\left( {\frac{1}{2}.2.2} \right) = 4$ $\left( {{{\text{m}}^{\text{2}}}} \right){\text{.}}$

Độ dài cạnh góc vuông của hai tam giác vuông cân được tô màu theo lần vẽ thứ hai là $\frac{1}{2}.\sqrt {{2^2} + {2^2}} \, = \sqrt 2 \,\,\left( {\text{m}} \right).$ Khi đó diện tích của hai tam giác được tô màu sau lần vẽ thứ hai là

 ${u_2} = 2\left( {\frac{1}{2}.\sqrt 2 .\sqrt 2 } \right) = 4.\frac{1}{2}$ $\left( {{{\text{m}}^{\text{2}}}} \right){\text{.}}$

Độ dài cạnh góc vuông của hai tam giác vuông cân được tô màu theo lần vẽ thứ ba là\[\frac{1}{2}.\sqrt {{{\left( {\sqrt 2 } \right)}^2} + {{\left( {\sqrt 2 } \right)}^2}} = 1\,\,\left( {\text{m}} \right).\] Khi đó diện tích của hai tam giác được tô màu sau lần vẽ thứ ba là

${u_3} = 2\left( {\frac{1}{2}.1.1} \right) = 4.{\left( {\frac{1}{2}} \right)^2}$ $\left( {{{\text{m}}^{\text{2}}}} \right){\text{.}}$

Khi đó, dãy số $\left( {{u_n}} \right)$ là một cấp số nhân với số hạng đầu ${u_1} = 4$ và công bội $q = \frac{1}{2}.$

Ta có công thức số hạng tổng quát ${u_n} = 4.{\left( {\frac{1}{2}} \right)^{n - 1}}$ $\left( {{{\text{m}}^{\text{2}}}} \right){\text{.}}$

Tổng diện tích của các tam giác được tô màu sau lần vẽ thứ 10 là:

${S_{10}} = \frac{{4\left[ {1 - {{\left( {\frac{1}{2}} \right)}^{10}}} \right]}}{{1 - \frac{1}{2}}} = \frac{{1\,\,023}}{{128}}$ $\left( {{{\text{m}}^{\text{2}}}} \right){\text{.}}$

Vậy số tiền nước sơn là $\frac{{1\,\,023}}{{128}}.80\,\,000 = 639\,\,375$ đồng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

Trong các dãy số sau, dãy số nào không phải là một cấp số nhân?

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Tập xác định $D$ của hàm số $y = 2\tan x$

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Vietjack official store
Đăng ký gói thi VIP

VIP +1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +3 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +6 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay

VIP +12 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Hơn 100K đề thi thử, đề minh hoạ, chính thức các năm
  • Với 2tr+ câu hỏi theo các mức độ Nhận biết, Thông hiểu, Vận dụng
  • Tải xuống đề thi [DOCX] với đầy đủ đáp án
  • Xem bài giảng đính kèm củng cố thêm kiến thức
  • Bao gồm tất cả các bậc từ Tiểu học đến Đại học
  • Chặn hiển thị quảng cáo tăng khả năng tập trung ôn luyện

Mua ngay