Câu hỏi:
30/06/2024 209
Giả sử trong một hồ tự nhiên, tảo là thức ăn của giáp xác; cá mương sử dụng giáp xác làm thức ăn đồng thời lại làm mồi cho cá quả. Cá quả tích luỹ được 1152 × 103 kcal, tương đương với 10% năng lượng tích luỹ ở bậc dinh dưỡng thấp hơn liền kề với nó. Cá mương tích luỹ được một lượng năng lượng tương đương với 8% năng lượng tích luỹ ở giáp xác. Tảo tích luỹ được 12 × 108 kcal. Hiệu suất sinh thái giữa bậc dinh dưỡng cấp 2 và bậc dinh dưỡng cấp 1 là bao nhiêu?
Giả sử trong một hồ tự nhiên, tảo là thức ăn của giáp xác; cá mương sử dụng giáp xác làm thức ăn đồng thời lại làm mồi cho cá quả. Cá quả tích luỹ được 1152 × 103 kcal, tương đương với 10% năng lượng tích luỹ ở bậc dinh dưỡng thấp hơn liền kề với nó. Cá mương tích luỹ được một lượng năng lượng tương đương với 8% năng lượng tích luỹ ở giáp xác. Tảo tích luỹ được 12 × 108 kcal. Hiệu suất sinh thái giữa bậc dinh dưỡng cấp 2 và bậc dinh dưỡng cấp 1 là bao nhiêu?
Quảng cáo
Trả lời:
Hướng dẫn giải:
- Bậc dinh dưỡng cấp 2 là giáp xác.
- Bậc dinh dưỡng cấp 1 là tảo, tích luỹ được 12 × 108 kcal.
- Cá quả tích luỹ được 1152 × 103 kcal = 10% năng lượng tích luỹ ở cá mương.
→ Số năng lượng cá mương tích luỹ được là: 1152 × 104 kcal.
- Cá mương tích luỹ được một lượng năng lượng tương đương với 8% năng lượng tích luỹ ở giáp xác.
→ Số năng lượng tích luỹ ở giáp xác là: 144 × 106 kcal.
- Hiệu suất sinh thái giữa bậc dinh dưỡng cấp 2 và bậc dinh dưỡng cấp 1 là
(144 × 106) : (12 × 108) = 12%.
Chọn A
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia TP Hồ Chí Minh (2 cuốn) ( 140.000₫ )
- Tuyển tập 15 đề thi Đánh giá tư duy Đại học Bách Khoa Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội 2025 (Tập 1) ( 39.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

Giả sử người đó đi từ A đến M để lấy nước và đi từ M về B. Dễ dàng tính được BD = 369, EF = 492. Ta đặt EM = x, khi đó:
\(MF = 492 - x,AM = \sqrt {{x^2} + {{118}^2}} ,BM = \sqrt {{{(492 - x)}^2} + {{487}^2}} .\)
Như vậy ta có hàm số f(x) được xác định bằng tổng quãng đường AM và MB :
\(f(x) = \sqrt {{x^2} + {{118}^2}} + \sqrt {{{(492 - x)}^2} + {{487}^2}} \) với \(x \in [0;492]\)
Ta cần tìm giá trị nhỏ nhất của f(x) để có quãng đường ngắn nhất và từ đó xác định được vị trí điểm M.
\(f'(x) = \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} - \frac{{492 - x}}{{\sqrt {{{(492 - x)}^2} + {{487}^2}} }}\)
\(f'(x) = 0 \Leftrightarrow \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} - \frac{{492 - x}}{{\sqrt {{{(492 - x)}^2} + {{487}^2}} }} = 0\)
\( \Leftrightarrow \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} = \frac{{492 - x}}{{\sqrt {{{(492 - x)}^2} + {{487}^2}} }}\)
\( \Leftrightarrow x\sqrt {{{(492 - x)}^2} + {{487}^2}} = (492 - x)\sqrt {{x^2} + {{118}^2}} \)
\( \Leftrightarrow \left\{ \begin{array}{l}{x^2}\left[ {{{(492 - x)}^2} + {{487}^2}} \right] = {\left( {492 - x} \right)^2}\left( {{x^2} + {{118}^2}} \right)\\0 \le x \le 492\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}{(487x)^2} = {(58056 - 118x)^2}\\0 \le x \le 492\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{58056}}{{605}}{\rm{ hay }}x = - \frac{{58056}}{{369}}\\0 \le x \le 492\end{array} \right.\)
\( \Leftrightarrow x = \frac{{58056}}{{605}}\)
Hàm số \(f(x)\) liên tục trên đoạn [0; 492]. So sánh các giá trị của \(f(0),f\left( {\frac{{58056}}{{605}}} \right),f(492)\) ta có giá trị nhỏ nhất là \(f\left( {\frac{{58056}}{{605}}} \right) \approx 779,8\;{\rm{m}}\).
Chọn B
Lời giải
Chọn đáp án C
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.