Câu hỏi:
13/07/2024 129Câu hỏi trong đề: Giải SGK Toán 12 CD Bài 3. Tích phân có đáp án !!
Quảng cáo
Trả lời:
Ta có F'(x) = ; G'(x) =
(do C là hằng số).
Suy ra F(x) = ; G(x) =
là các nguyên hàm của hàm số f(x) = x2.
Hot: 500+ Đề thi thử tốt nghiệp THPT các môn, ĐGNL các trường ĐH... file word có đáp án (2025). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Sau bài học này ta giải quyết được bài toán trên như sau:
Để tính được diện tích của logo ta cần xác định các hàm số f(x) và g(x), sau đó sử dụng tích phân để tính diện tích hình phẳng giới hạn bởi các đồ thị hàm số f(x), g(x) và hai đường thẳng x = – 5, x = 4.
Vì f(x), g(x) là các parabol nên gọi f(x) = ax2 + bx + c (a ≠ 0) và g(x) = a'x2 + b'x + c' (a' ≠ 0).
Quan sát Hình 3, ta thấy:
+ Đồ thị hàm số y = f(x) đi qua các điểm (0; 2), (4; 0) và (– 4; 0) nên
.
Suy ra .
+ Đồ thị hàm số y = g(x) đi qua các điểm (0; – 3), (4; 0) và (– 4; 0) nên
.
Suy ra .
Diện tích của logo là:
(dm2).
Lời giải
Gọi s(t) là quãng đường đi được của chuyển động.
Ta có vận tốc là đạo của quãng đường: s'(t) = v(t). Do đó hàm số s(t) là một nguyên hàm của hàm số v(t). Khi đó ta có .
Vậy biểu thị quãng đường mà vật đi được trong khoảng thời gian từ a đến b.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.