Quảng cáo
Trả lời:

Áp dụng công thức lượng giác trên có:
\[\overline {{{\cos }^2}\omega t} = \overline {\frac{{1 + \cos 2\omega t}}{2}} = \frac{1}{T}\int\limits_{{t_1}}^{{t_1} + T} {\frac{{1 + \cos 2\omega t}}{2}} dt = \frac{1}{T}\int\limits_{{t_1}}^{{t_1} + T} {\left( {\frac{1}{2} + \frac{{\cos 2\omega t}}{2}} \right)} dt\]
\[\left. { = \frac{1}{T}\left[ {\frac{1}{2}t + \frac{{\sin 2\omega t}}{4}} \right]} \right|_{{t_1}}^{{t_1} + T} = \frac{1}{T}\left[ {\left( {\frac{1}{2}({t_1} + T) - \frac{1}{2}{t_1}} \right) + \frac{{\sin 2\omega ({t_1} + T) - \sin 2\omega {t_1}}}{4}} \right]\]
\[ = \frac{1}{T}\left[ {\frac{1}{2}T + \frac{{\sin (2\omega {t_1} + 2\omega T) - \sin 2\omega {t_1}}}{4}} \right]\]
\[ = \frac{1}{T}\left[ {\frac{1}{2}T + \frac{{\sin 2\omega {t_1}.\cos 2\omega T + \cos 2\omega {t_1}.\sin 2\omega T - \sin 2\omega {t_1}}}{4}} \right]\]
\[ = \frac{1}{T}\left[ {\frac{1}{2}T + \frac{{\sin 2\omega {t_1} + 0 - \sin 2\omega {t_1}}}{4}} \right] = \frac{1}{2}\]
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 500 Bài tập tổng ôn Vật lí (Form 2025) ( 38.000₫ )
- 1000 câu hỏi lí thuyết môn Vật lí (Form 2025) ( 45.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Điện áp cực đại:
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.