Câu hỏi:

21/10/2024 265

Gieo lần lượt hai con xúc xắc cân đối và đồng chất. Tính xác suất để tổng số chấm xuất hiện trên hai con xúc xắc bằng 6. Biết rằng con xúc xắc thứ nhất xuất hiện mặt 4 chấm.

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn sử Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: A

Gọi A là biến cố “Con xúc xắc thứ nhất xuất hiện mặt 4 chấm”

Gọi B là biến cố “Tổng số chấm xuất hiện trên 2 con xúc xắc bằng 6”.

Khi con xúc xắc thứ nhất đã xuất hiện mặt 4 chấm thì lần thứ hai xuất hiện mặt 2 chấm.

Do đó chỉ có 1 trường hợp thỏa mãn.

Vậy P = \(\frac{1}{6}.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hai biến cố A và B, với \(P\left( A \right) = 0,6\), \(P\left( B \right) = 0,7\), \(P\left( {A \cap B} \right) = 0,3\). Tính \(P\left( {\overline A \cap B} \right).\)

Xem đáp án » 21/10/2024 2,310

Câu 2:

II. Thông hiểu

Cho hai biến cố \(A\) và \(B\) với \(P\left( A \right) = 0,8\), \(P\left( B \right) = 0,65\), \(P\left( {A \cap \overline B } \right) = 0,55\). Tính \(P\left( {A \cap B} \right)\).

Xem đáp án » 21/10/2024 1,194

Câu 3:

Một hộp chứa 8 bi trắng, 2 bi đỏ. Lần lượt lấy từng viên bi. Giả sử lần đầu tiên bốc được bi trắng. Xác định xác suất lần thứ hai bốc được bi đỏ.

Xem đáp án » 21/10/2024 1,048

Câu 4:

Một công ty truyền thông đấu thầu 2 dự án. Khả năng thắng thầu của dự án 1 là 0,5 và dự án 2 là 0,6. Khả năng thắng thầu của 2 dự án là 0,4. Gọi \(A,B\) lần lượt là biến cố thắng thầu của dự án 1 và dự án 2.

a) \(A\) và \(B\) là hai biến cố độc lập.

b) Xác suất công ty thắng thầu đúng 1 dự án là 0,3.

c) Biết công ty thắng thầu dự án 1, xác suất để công ty thắng thầu dự án 2 là 0,4.

d) Biết công ty không thắng thầu dự án 2, xác suất để công ty thắng thầu dự án là 0,8.

Số mệnh đề sai trong các mệnh đề trên là:

Xem đáp án » 21/10/2024 452

Câu 5:

Cho hai biến cố \(A\) và \(B\) là hai biến cố độc lập, với \(P\left( A \right) = 0,2024\), \(P\left( B \right) = 0,2025\). Tính \(P\left( {A|B} \right)\).

Xem đáp án » 21/10/2024 363

Câu 6:

Lớp 10A có 35 học sinh, mỗi học sinh đều giỏi ít nhất một trong hai môn toán hoặc Văn. Biết rằng có 23 học sinh giỏi Toán và có 20 học sinh giỏi môn Văn. Chọn ngẫu nhiên một học sinh của lớp 10A. Khi đó:

a) Xác suất để học sinh được chọn giỏi Toán biết rằng học sinh đó cũng giỏi Văn là \(\frac{2}{5}.\)

b) Xác suất để học sinh được chọn giỏi môn Văn biết rằng học sinh đó cũng giỏi môn Toán bằng \(\frac{8}{{23}}.\)

c) Xác suất để học sinh được chọn không giỏi môn Toán biết rằng học sinh đó giỏi môn Văn bằng \(\frac{{15}}{{23}}.\)

d) Xác suất để học sinh được chọn không giỏi môn Văn biết rằng học sinh đó giỏi môn Toán bằng \(\frac{3}{5}.\)

Số mệnh đề đúng trong các mệnh đề trên là:

Xem đáp án » 21/10/2024 351

Câu 7:

Cho hai biến cố \(A\) và \(B\) là hai biến cố độc lập, với \(P\left( A \right) = 0,7\), \(P\left( {\overline B } \right) = 0,6.\) Khi đó:

a) \(P\left( {A|B} \right) = 0,6.\)

b) \(P\left( {B|\overline A } \right) = 0,4.\)

c) \(P\left( {\overline A |B} \right) = 0,45.\)

d) \(P\left( {\overline B |\overline A } \right) = 0,6.\)

Số mệnh đề đúng trong các mệnh đề trên là

Xem đáp án » 21/10/2024 295

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Vietjack official store