Câu hỏi:

21/10/2024 108

Có hai lô sản phẩm. Lô I có 20 sản phẩm, trong đó có 15 sản phẩm tốt và 5 sản phẩm lỗi. Lô II có 20 sản phẩm, trong đó có 10 sản phẩm tốt và 10 sản phẩm lỗi. Lấy ngẫu nhiên 1 lô và từ lô nãy lấy ngẫu nhiên ra 1 sản phẩm. Khi đó:

a) Xác suất để sản phẩm lấy ra là sản phẩm tốt bằng \(\frac{5}{8}.\)

b) Xác suất để sản phẩm lấy ra là sản phẩm lỗi bằng \(\frac{3}{8}.\)

c) Giả sử sản phẩm lấy ra là sản phẩm tốt. Xác suất để sản phẩm đó có lô thứ II là \(\frac{2}{5}.\)

d) Giả sử sản phẩm lấy ra là phế phẩm. Xác suất để sản phẩm đó có lô thứ nhất là \(\frac{1}{2}.\)

Số mệnh đề đúng trong các mệnh đề trên là

Đáp án chính xác

Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).

Tổng ôn toán Tổng ôn lý Các môn khác

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Đáp án đúng là: C

Gọi B1 là biến cố: “Lô lấy ra là lô I”

B2 là biến cố: “Lô lấy ra là lô II”.

a) Gọi A là biến cố: “Sản phẩm lấy ra là sản phẩm tốt”.

Ta có: P(A) = P(B1).P(A | B1) + P(B2).P(A | B2)

Mà P(B1) = \(\frac{1}{2}\), P(B2) = \(\frac{1}{2}\), P(A | B1) = \(\frac{{15}}{{20}} = \frac{3}{4}\), P(A | B2) = \(\frac{{10}}{{20}} = \frac{1}{2}\).

Vậy P(A) = \(\frac{1}{2}.\frac{3}{4} + \frac{1}{2}.\frac{1}{2} = \frac{5}{8}.\)

Vậy ý c đúng.

b) Ta có: P(A) = \(\frac{5}{8}\), suy ra P(\(\overline A \)) = 1 – P(A) = 1 – \(\frac{5}{8}\) = \(\frac{3}{8}.\)

Vậy ý b đúng.

c) Ta có: P(B2) = \(\frac{1}{2}\), P(A | B2) = \(\frac{{10}}{{20}} = \frac{1}{2}\), P(A) = \(\frac{5}{8}\).

Vậy P(B2 | A) = \(\frac{{P\left( {{B_2}} \right).P\left( {A|{B_2}} \right)}}{{P\left( A \right)}} = \frac{{0,5.0,5}}{{\frac{5}{8}}} = \frac{2}{5}.\)

Vậy ý c đúng.

d) Ta có: P(\(\overline A \)| B1) = 1 – P(A | B1) = 1 – \(\frac{3}{4}\)= \(\frac{1}{4}\).

Ta có: \(P\left( {{B_1}|\overline A } \right) = \frac{{P\left( {{B_1}} \right).P\left( {\overline A |{B_1}} \right)}}{{P\left( {\overline A } \right)}} = \frac{{0,5.0,25}}{{\frac{3}{8}}} = \frac{1}{3}.\)

Vậy ý d sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Giả sử trong một trường học, có 80% học sinh đã học bài kiểm tra toán và 20% học sinh chưa học bài. Trong số những học sinh đã học bài, 90% đạt điểm cao (trên 8), còn trong số những học sinh chưa học bài, chỉ có 20% học sinh đạt điểm cao. Nếu chọn ngẫu nhiên một học sinh đạt điểm cao trong bài kiểm tra, xác suất để học sinh đó thuộc bài là bao nhiêu?

Xem đáp án » 21/10/2024 86

Câu 2:

Một công ty du lịch bố trí chỗ cho đoàn khách tại ba khách sạn A, B, C theo tỉ lệ 20%, 50%, 30%. Tỉ lệ hỏng điều hòa ở khách sạn lần lượt là 5%, 4% và 8%. Tính xác suất để một khách nghỉ ở phòng điều hòa bị hỏng.

Xem đáp án » 21/10/2024 73

Câu 3:

Cho hai biến cố \(A,B\) với \(P\left( B \right) = 0,3;{\rm{ }}P\left( A \right) = 0,4\) và \(P\left( {A|B} \right) = 0,25.\) Khi đó, \(P\left( {B|A} \right)\) bằng

Xem đáp án » 21/10/2024 70

Câu 4:

Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng là 0,85 và 0,15. Do có nhiễu trên đường truyền nên \(\frac{1}{7}\) tín hiệu A bị méo và thu được tín hiệu B còn \(\frac{1}{8}\) tín hiệu B bị méo và thu được tín hiệu A. Giả sử đã thu được tín hiệu A, tính xác suất thu được đúng tín hiệu lúc phát.

Xem đáp án » 21/10/2024 66

Câu 5:

III. Vận dụng

Một chiếc hộp có 80 viên bi, trong đó 50 viên màu đỏ, 30 viên màu vàng ; các viên có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60% số viên bi màu đỏ đánh số và 50% viên bi màu vàng đánh số, những viên bi còn lại không đánh số. Khi đó:

a) Số viên bi màu đỏ có đánh số là 30.

b) Số viên bi màu vàng không đánh số là 15.

c) Lấy ra ngẫu nhiên một viên vi trong hộp. Xác suất để viên bi được lấy ra có đánh số là \(\frac{3}{5}.\)

d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là \(\frac{7}{{16}}.\)

Số mệnh đề đúng trong các mệnh đề trên là:

Xem đáp án » 21/10/2024 60

Câu 6:

II. Thông hiểu

Cho hai biến cố \(A,B\) với \(P\left( B \right) = 0,8;{\rm{ }}P\left( {A|B} \right) = 0,7\) và \(P\left( {A|\overline B } \right) = 0,45.\) Tính \(P\left( A \right)\).

Xem đáp án » 21/10/2024 51

Bình luận


Bình luận
Đăng ký gói thi VIP

VIP 1 - Luyện thi tất cả các đề có trên Website trong 1 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 2 - Luyện thi tất cả các đề có trên Website trong 3 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 3 - Luyện thi tất cả các đề có trên Website trong 6 tháng

  • Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

VIP 4 - Luyện thi tất cả các đề có trên Website trong 12 tháng

  • Siêu tiết kiệm - Được thi tất cả các đề của các lớp có trên Khoahoc.vietjack.com
  • Ngân hàng câu hỏi trắc nghiệm theo các mức độ Nhận biết, Thông hiểu, Vận dụng, Vận dụng cao.
  • Luyện chuyên sâu, rèn tốc độ với trọn bộ đề thi thử, đề minh họa, chính thức các năm.
  • Hỏi bài tập với đội ngũ chuyên môn cao của chúng tôi.

Đặt mua

Sách cho 2k7 ôn luyện THPT-vs-DGNL