Câu hỏi:

23/10/2024 1,211

Xét những tờ giấy hình chữ nhật, kẻ ca-rô cỡ m × n ô vuông, một cách phân chia “tốt” được xác định khi ta chỉ dùng những dòng kẻ có sẵn chia tờ giấy thành những phần bằng nhau sao cho mỗi phần đều là những hình vuông cỡ p × p (p 2) ô. Chẳng hạn, ở hình dưới, bằng những dòng kẻ được tô màu xanh, ta xác định một cách phân chia “tốt” với m = 9, n = 12, p = 3.

Xét những tờ giấy hình chữ nhật, kẻ ca-rô cỡ m × n ô vuông, một cách phân chia “tốt” được xác định khi ta chỉ dùng những dòng kẻ có sẵn chia tờ giấy thành những phần bằng nhau sao cho mỗi phần đều là những hình vuông cỡ p × p (p ≥ 2) ô. Chẳng hạn, ở hình dưới, bằng những dòng kẻ được tô màu xanh, ta xác định một cách phân chia “tốt” với m = 9, n = 12, p = 3. (ảnh 1)

Số cách phân chia “tốt” đối với một tờ giấy ca-rô cỡ 120 × 300 là

Quảng cáo

Trả lời:

verified
Giải bởi Vietjack

Hướng dẫn giải:

Ta có 300 = 3.52.22 ; 120 = 3.23.5.

Ta có ước chung lớn nhất của 300 và 120 là 3.22.5;

Số cách phân chia “tốt” đối với một tờ giấy ca-rô cỡ 120 × 300 là số ước tự nhiên của số 3.22.5.

Gọi 3x.2y.5z, (x, y, z là các số tự nhiên; 0 ≤ x ≤ 1, 0 ≤ y ≤ 2, 0 ≤ z ≤ 1) là ước của số 3.22.5.

Số cách chọn x là: 2 cách;

Số cách chọn y là: 3 cách;

Số cách chọn z là: 2 cách;

Do đó số ước tự nhiên là: 2.3.2 = 12;

Vậy có 12 cách phân chia “tốt” đối với một tờ giấy ca-rô cỡ 120 × 300.

 Chọn A

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cho hai vị trí A, B cách nhau 615 m, cùng nằm về một phía bờ sông như hình vẽ. Khoảng cách từ A và từ B đến bờ sông lần lượt là 118 m và 487 m. Một người đi từ A đến bờ sông để lấy nước mang về B. Đoạn đường ngắn nhất mà người đó có thể đi là (Kết quả được làm tròn đến hàng đơn vị). (ảnh 2)

Giả sử người đó đi từ A đến M để lấy nước và đi từ M về B. Dễ dàng tính được BD = 369, EF = 492. Ta đặt EM = x, khi đó:

\(MF = 492 - x,AM = \sqrt {{x^2} + {{118}^2}} ,BM = \sqrt {{{(492 - x)}^2} + {{487}^2}} .\)

Như vậy ta có hàm số f(x) được xác định bằng tổng quãng đường AM và MB :

\(f(x) = \sqrt {{x^2} + {{118}^2}}  + \sqrt {{{(492 - x)}^2} + {{487}^2}} \)​ với \(x \in [0;492]\)

Ta cần tìm giá trị nhỏ nhất của f(x) để có quãng đường ngắn nhất và từ đó xác định được vị trí điểm M.

\(f'(x) = \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} - \frac{{492 - x}}{{\sqrt {{{(492 - x)}^2} + {{487}^2}} }}\)

\(f'(x) = 0 \Leftrightarrow \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} - \frac{{492 - x}}{{\sqrt {{{(492 - x)}^2} + {{487}^2}} }} = 0\)

\( \Leftrightarrow \frac{x}{{\sqrt {{x^2} + {{118}^2}} }} = \frac{{492 - x}}{{\sqrt {{{(492 - x)}^2} + {{487}^2}} }}\)

\( \Leftrightarrow x\sqrt {{{(492 - x)}^2} + {{487}^2}}  = (492 - x)\sqrt {{x^2} + {{118}^2}} \)

\( \Leftrightarrow \left\{ \begin{array}{l}{x^2}\left[ {{{(492 - x)}^2} + {{487}^2}} \right] = {\left( {492 - x} \right)^2}\left( {{x^2} + {{118}^2}} \right)\\0 \le x \le 492\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}{(487x)^2} = {(58056 - 118x)^2}\\0 \le x \le 492\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l}x = \frac{{58056}}{{605}}{\rm{ hay }}x =  - \frac{{58056}}{{369}}\\0 \le x \le 492\end{array} \right.\)

\( \Leftrightarrow x = \frac{{58056}}{{605}}\)

Hàm số \(f(x)\) liên tục trên đoạn [0; 492]. So sánh các giá trị của \(f(0),f\left( {\frac{{58056}}{{605}}} \right),f(492)\) ta có giá trị nhỏ nhất là \(f\left( {\frac{{58056}}{{605}}} \right) \approx 779,8\;{\rm{m}}\).

 Chọn B

Câu 2

Lời giải

Chọn đáp án C

Câu 3

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP