Câu hỏi:
31/10/2024 88Xét các số phức \(z\) thỏa mãn \(\left( {\bar z + 2i} \right)\left( {z - 2} \right)\) là số thuần ảo. Trên mặt phẳng tọa độ, tập hợp tất cả các điểm biểu diễn các số phức \(z\) là đường tròn \(\left( C \right)\).
Trong các khẳng định sau, khẳng định nào đúng, khẳng định nào sai?
|
ĐÚNG |
SAI |
Đường tròn \(\left( C \right)\) có tâm \(I\left( {1;1} \right)\). |
||
Đường tròn \(\left( C \right)\) không cắt trục hoành. |
Sách mới 2k7: Sổ tay Toán, Lí, Hóa, Văn, Sử, Địa... kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 30k).
Quảng cáo
Trả lời:
Đáp án
|
ĐÚNG |
SAI |
Đường tròn \(\left( C \right)\) có tâm \(I\left( {1;1} \right)\). |
X | |
Đường tròn \(\left( C \right)\) không cắt trục hoành. |
X |
Phương pháp giải
- Giả sử \(z = x + yi\) với \(x,y \in \mathbb{R}\).
- Biến đổi phương trình.
- Số thuần ảo là số có phần thực bằng 0 .
Lời giải
Giả sử \(z = x + yi\) với \(x,y \in \mathbb{R}\).
Vì \(\left( {\bar z + 2i} \right)\left( {z - 2} \right) = \left[ {x + \left( {2 - y} \right)i} \right]\left[ {\left( {x - 2} \right) + yi} \right] = \) \(\left[ {x\left( {x - 2} \right) - y\left( {2 - y} \right)\left] + \right[xy + \left( {x - 2} \right)\left( {2 - y} \right)} \right]i\) là số thuần ảo nên có phần thực bằng không do đó \(x\left( {x - 2} \right) - y\left( {2 - y} \right) = 0 \Leftrightarrow {(x - 1)^2} + {(y - 1)^2} = 2\). Suy ra tập hợp các điểm biểu diễn các số phức \(z\) là một đường tròn có bán kính bằng \(\sqrt 2 \).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Câu 2:
Phần tư duy đọc hiểu
Từ đoạn số [1], cụ Kép nghĩ rằng mình không phù hợp để chơi hoa vì lí do nào sau đây?
Câu 4:
Gọi \(S\) là tập tất cả các giá trị thực của tham số \(m\) để phương trình \(2{x^3} - 3{x^2} = 2m + 1\) có đúng hai nghiệm phân biệt.
Số phần tử của \(S\) là _______
Câu 5:
Có bao nhiêu số có 5 chữ số đôi một khác nhau và trong đó có đúng một chữ số lẻ?
Đáp án: ______
Câu 6:
Phần tư duy khoa học / giải quyết vấn đề
Điền các cụm từ thích hợp vào chỗ trống.
- Khi dịch hai khe lại gần màn chắn thì khoảng vân sẽ _______
- Khi giảm khoảng cách hai khe thì khoảng vân sẽ _______
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 1)
Top 5 đề thi Đánh giá năng lực trường ĐH Bách khoa Hà Nội năm 2023 - 2024 có đáp án (Đề 1)
Đề thi thử đánh giá tư duy Đại học Bách khoa Hà Nội năm 2024 có đáp án (Đề 24)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 2)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 7)
Top 5 đề thi Đánh giá năng lực trường ĐH Bách Khoa Hà Nội năm 2023 - 2024 có đáp án (đề 3)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 5)
Đề thi Đánh giá tư duy Đại học Bách khoa Hà Nội có đáp án (Đề 3)
về câu hỏi!