Câu hỏi:
31/10/2024 77Cho tập hợp \(A = \left\{ {1;2;3;4;5} \right\}\). Gọi \(S\) là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số, các chữ số đôi một khác nhau được lập thành từ các chữ số thuộc tập \({\rm{A}}\). Chọn ngẫu nhiên một số từ tập \({\rm{S}}\), xác xuất để số được chọn có tổng các chữ số bằng 10 được viết dưới dạng phân số tối giản \(\frac{a}{b}\) \(\left( {a,b \in \mathbb{Z}} \right)\).
Tổng \(a + b\) bằng _______
Sách mới 2k7: Tổng ôn Toán, Lí, Hóa, Văn, Sử, Địa…. kỳ thi tốt nghiệp THPT Quốc gia 2025, đánh giá năng lực (chỉ từ 110k).
Quảng cáo
Trả lời:
Đáp án: “28”
Phương pháp giải
Vì \(S\) là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số, các chữ số đôi một khác nhau được lập thành từ các chữ số thuộc tập \(A\)
Lời giải
Vì S là tập hợp tất cả các số tự nhiên có ít nhất 3 chữ số, các chữ số đôi một khác nhau được lập thành từ các chữ số thuộc tập \(A\) nên ta tính số phần tử thuộc tập \(S\) như sau:
+ Số các số thuộc \(S\) có 3 chữ số là \(A_5^3\).
+ Số các số thuộc \(S\) có 4 chữ số là \(A_5^4\).
+ Số các số thuộc \(S\) có 5 chữ số là \(A_5^5\).
Suy ra số phần tử của tập \(S\) là \(A_5^3 + A_5^4 + A_5^5 = 300\).
Số phần tử của không gian mẫu là \({n_{\rm{\Omega }}} = C_{300}^1 = 300\)
Gọi \(X\) là biến cố "Số được chọn có tổng các chữ số bằng 10 ". Các tập con của \(A\) có tổng số phần tử bằng 10 là \({A_1} = \left\{ {1;2;3;4} \right\},{A_2} = \left\{ {2;3;5} \right\},{A_3} = \left\{ {1;4;5} \right\}\).
+ Từ \({A_1}\) lập được các số thuộc \(S\) là 4!.
+ Từ \({A_2}\) lập được các số thuộc \(S\) là 3!.
+ Từ \({A_3}\) lập được các số thuộc \(S\) là 3!.
Suy ra số phần tử của biến cố \(X\) là \({n_X} = 4! + 3! + 3! = 36\).
Vậy xác suất cần tính \(P\left( X \right) = \frac{{{n_X}}}{{{n_{\rm{\Omega }}}}} = \frac{{36}}{{300}} = \frac{3}{{25}}\).
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1:
Phần tư duy đọc hiểu
Từ đoạn số [1], cụ Kép nghĩ rằng mình không phù hợp để chơi hoa vì lí do nào sau đây?
Câu 3:
Câu 5:
Chất nào là chất mà theo hai nhà khoa học phải có mặt để tạo ra CH3 từ metan trong bầu khí quyển?
Câu 6:
Một hệ gồm 4 nam châm được sắp xếp như hình sau. Các nhận xét sau đây về tương tác giữa các nam châm là đúng?
Câu 7:
Cho hàm số \(y = f\left( x \right)\) có đạo hàm liên tục trên \(\mathbb{R}\). Đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ
Hàm số \(g\left( x \right) = 2f\left( x \right) - {x^2}\) đồng biến trên khoảng nào trong các khoảng sau đây?
về câu hỏi!